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I, INTRODUCTION 

In today's business community, there is an increasing awareness of 

the increasing complexity in the evaluation of capital alternatives and 

this complexity has resulted in a growing concern for the risk imposed by 

the market place. As a result, economic decision procedures that 

recognize and reduce possible risks are increasingly needed. This 

research focuses on the treatment of multi-valued estimates in the 

evaluation of mutually exclusive alternatives. 

Risk can be defined on a general level as the potential for 

realization of unwanted, negative consequence of an event [Rowe 1977]. 

However, it is important that the control of risks be considered as well. 

Conventional economic decision models have involved only single 

valued estimates. When one considers the uncertainty that may be related 

to the array of variables that form the final figure of merit in an 

economic decision, i.e., rate of return or present worth, one is tempted 

to question the purely deterministic approach that is habitually followed 

to solve this type of problem. 

The multi-valued estimate problem has been traditionally addressed in 

the context of risk in the evaluation of capital alternatives. Steps are 

as follows [Smith 1979]: 

1. Identification of different alternatives. 

2. Identification of different states of nature. 

The outcomes (payoffs) for the various alternatives under different states 

of nature can now be calculated. Knowing the possible payoffs for each 

alternative, two further steps are required: 
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3. Assignment of a probability distribution to the payoffs under 

various states of nature for each alternative. 

4. Aggregation of these payoffs into an expected value permitting 

identification of the optimal alternative. 

There are two extreme cases in assigning probabilities to various 

states of nature. The first extreme case is that the decision maker has 

no information on which to base probability. Following the terminology 

suggested by Knight [1921], this case is referred as decision making under 

the context of uncertainty. One approach to handling problems in the 

context of uncertainty is the Bayes-Laplace criterion which assigns equal 

probabilities to various states of nature. Another approach is based on 

the extreme payoffs of these alternatives. This approach is generally 

referred to as the criteria of "maximin", "maximax", or "minimax regret". 

The second and opposite extreme case is that the decision maker is 

able to determine, subjectively or objectively, the probabilities 

associated with the states of nature. Knight termed this case as decision 

making under the context of risk. In life-cycle cost analysis, it is 

difficult, if not impossible, to associate objective or subjective 

probabilities to a number of important variables, such as taxes, the 

forecasted escalation (or de-escalation) rate for different fuels, or the 

forecasted consumption of energy for a building. Hence, the traditional 

approach of maximizing the expected value is likely to be of little or no 

value to the decision maker. 

In many practical decision problems, the assessment of probabilities 

lies somewhere between the two extreme cases. If the decision maker can 
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rank the probabilities in the order of likelihood, the problem is referred 

as decision making under the context of incomplete knowledge. This term 

was coined by Cannon and Kmietowicz [1974]. 

Under the context of incomplete knowledge, the preordering of the 

probabilities may be done on the basis of either a weak or a strict 

ranking. Weak ranking only specifies the ordering of probabilities for 

various states of nature. Strict ranking assumes that successive 

probabilities differ from each other by at least a given amount. 

For weak ranking under the context of incomplete knowledge, several 

decision criterion have been developed. Fishburn [1964] defined a strict 

dominance decision procedure. Cannon and Kmietowicz [1974] derived a 

partial average technique for determining the extreme expected values for 

an alternative. Kmietowicz and Pearman [1976] considered the dispersion 

(variance) of the payoffs under various states of nature as another 

criterion in choosing among alternatives. They also incorporated the 

expected value and variance into a single index with a trade-off 

coefficient (coefficient of risk aversion) between the expected value and 

the variance [Kmietowicz and Pearman 1981]. However, the method of 

determining the appropriate trade-off coefficient was not provided. 

Hence, the procedure for determining and final decision line when 

evaluating mutually exclusive alternatives is yet to be developed. 

For strict ranking under the context of incomplete knowledge, 

Kmietowicz and Pearman [1981] extended the partial average technique to 

determine the extreme expected values for an alternative under a number of 

possible states of nature. However, the methodology of searching for the 
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extreme variances and the extreme indexes of utility under the conditions 

of strict ranking has not been studied. 

The overall objective of this research was to provide a methodology 

for determining a complete and final decision line when evaluating one set 

of mutually exclusive alternatives under the context of incomplete 

knowledge for both weak and strict ranking. Specific objectives were to: 

1. Develop an algorithm to search for the extreme variances under 

conditions of strict ranking in the context of incomplete 

knowledge. 

2. Develop an algorithm to search for the extreme index of utility 

which is a linear combination of the expected value and variance 

under conditions of strict ranking in the context of Incomplete 

knowledge. 

3. Improve the methodology to determine the appropriate value of the 

coefficient of risk aversion. 

4. Determine the final decision line for mutually exclusive 

alternatives under conditions of weak ranking in the context of 

incomplete knowledge. 

5. Determine the final decision line for mutually exclusive 

alternatives under conditions of strict ranking in the context of 

incomplete knowledge. 
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II. LITERATURE REVIEW 

A decision model assumes that a decision maker can select one of (or 

rank) a number of strategies available to him. As the future is 

uncertain, the selected strategy must operate under one of a number of 

mutually exclusive states of nature. The actual payoff of the selected 

strategy, e.g., internal rate of return or present equivalent of savings, 

will depend on the state of nature which happens to occur. 

The essential information of a decision problem may be conveniently 

summarized in a payoff matrix originating from von Neumann and Morgenstern 

[1947]. 

State of Nature 

Strategy «1 «2 ... Nn 

Si ^11 ^12 Xln 

S2 ^21 ^22 ^2j X2n 

Si Xil h 2 Xin 

Sm Ll ^m2 Lj ^mn 

Here, the symbols (Nj, N2, ..., N^) denote possible mutually exclusive 

states of nature. The decision maker knows that if he chooses strategy 

and the environment dictates state of nature Nj, the result will be 

obtained. However, the decision maker does not know into which state of 

nature the future will fall. 

The economic approach to a solution of this decision model is to 

search for an evaluation function for each strategy. The results from the 

evaluation function form the basis for final decision making. 
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There are three approaches to the classical decision model 

[Kmietowicz and Pearman 1981]. The three approaches are distinguished by 

the amount of information available about the probabilities with which the 

states of nature are likely to occur. The first approach assumes that 

there is no information about the probabilities available to the decision 

maker. This situation is referred to as decision making under 

uncertainty. The second approach assumes that the probabilities of the 

states of nature can be specified completely. This situation is referred 

to as decision making under risk. The third approach assumes that some 

Information is available about the probabilities of the states of nature, 

but that the information is not comprehensive enough to enable exact 

specification of the probabilities. Decision making in such circumstances 

is referred to as decision making under conditions of incomplete 

knowledge. 

A» Decision Making Under Uncertainty 

Decision making under uncertainty assumes that the decision maker has 

no information about the probabilities of the states of nature. Several 

criteria have been proposed to help the decision maker face such 

conditions. 
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1. Maximln principle of Wald [1945] and of von Neumann and Morgenstern 

[19471 

The maximin criterion suggests that the decision maker should examine 

only the minimum payoffs and select the strategy with the largest of 

these. This criterion is very attractive to a cautious decision maker who 

wishes to ensure that even if an unfavorable state of nature occurs, there 

is a known minimum payoff below which he cannot fall. 

2. Maximax principle of Keynes [1921] 

The maximax criterion advises the decision maker to examine only 

maximum payoffs of strategies and to select the strategy with the largest 

of these maximum payoffs. The criterion reflects the viewpoint of a very 

optimistic decision maker who is greatly attracted by high payoffs and who 

hopes that the uncertain future develops favorably for him. 

3. Optimism-pessimism index of Hurwicz [Milnor 1954] 

The Hurwicz criterion suggests that the minimum and maximum payoffs 

of each strategy should be averaged using as weights a and 1 - a, where a 

is the index of pessimism. The strategy with the highest average is 

selected. The index a reflects the decision maker's attitude to risk 

taking. An extremely cautious decision maker will set ct = 1 and then the 

Hurwicz criterion reduces to the maximin criterion. An extremely 

aggressive decision maker will set a = 0. Here the Hurwicz criterion 

reduces to the maximax criterion. 
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4. Mlnlmax-regret principle of Savage [1951] 

The miniraax-regret criterion looks at the regret, opportunity cost or 

loss which arises when a particular state of nature is assumed to have 

occurred and the payoff of the selected strategy is smaller than the 

maximum payoff which could have been attained for that state of nature. 

The criterion takes the viewpoint of a cautious decision maker who wishes 

to ensure that the selected strategy does well in comparison with other 

strategies irrespective of which state of nature happens to arise. 

5. Bayes-Laplace assumption of Bernouilli and Laplace [Sinn 1983] 

The Bayes-Laplace criterion employs the principle of insufficient 

reason which postulates that if no information is available about the 

probabilities of the states of nature, it is only reasonable to assume 

that they are equally likely. The criterion thus reduces the problem to 

decision making under risk. The criterion goes on to suggest that the 

decision maker should calculate the expected payoff for each strategy and 

select the one with the highest payoff. 

Except for the Bayes-Laplace criterion, most of the decision criteria 

completely ignore the intermediate payoffs. Kmietowicz and Pearman [1981] 

pointed out that a notable disadvantage of complete ignorance of the 

intermediate payoffs is their exclusive reliance on the extreme payoffs of 

each strategy. The intermediate payoffs may be more likely to occur than 

the extreme payoffs. 

Another criticism of complete ignorance of the intermediate payoffs 

concerns the validity of the assumption of total lack of information about 
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the probabilities of the states of nature. In many situations, the 

decision maker will be fairly confident that certain states of nature are 

more likely to occur than others. 

B. Decision Making Under Risk 

In decision making under risk, it is assumed that exact probabilities 

of the states of nature are available. On some occasions, the 

probabilities can be established experimentally or deduced from a priori 

considerations; on other occasions, the decision maker's subjective 

probabilities are used. 

1. Objective probability 

The concept of objective probability is simply that value towards 

which the relative frequency of a particular event will stochastically 

converge when the decision situation is constantly repeated under 

indistinguishable conditions [Luce and Raiffa 1957]. The unambiguously 

correct objective probability does not exist. Also, it is impossible to 

repeatedly experiment under indistinguishable conditions in the decision 

making of the business world. 

In the study of games of chance, a priori judgment is usually made as 

to certain probability. The a priori probabilities are the judgments of 

the relative uncertainty of various hypotheses made on the basis of all 

past information. The a posteriori probabilities are the judgments made 

with the aid of new information. But for business affairs, there is no 
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natural way of making these judgments. Instead, the appeal is to focus on 

past observations, if any [Arrow 1970]. 

2. Subjective probability 

Subjective probabilities are based on the decision maker's beliefs 

about the future, and are obtained from him directly or indirectly in a 

number of ways. One attempt to deal with the difficulty of obtaining 

exact subjective probabilities of states of nature is attributable to 

Savage [1954]. Savage argued that, even if the decision maker is unable 

to specify exactly his subjective probabilities, deep down in his 

subconscious such a set must exist, and it is only necessary to elicit it 

from him. He suggested that this may be done by asking him a series of 

hypothetical questions about the probabilities of the states of nature. 

The replies can be analyzed with the help of laws governing probabilities, 

and an exact set of probabilities estimated. 

Such experiments have, in fact, been conducted, but unfortunately it 

soon became apparent that the replies were often inconsistent. The 

greater the uncertainty about the future the greater was the number of 

inconsistent replies. These experiments seem to suggest that decision 

makers have some useful information about probabilities of states of 

nature, but it is not sufficiently detailed to ensure a unique 

specification. Other approaches for obtaining subjective probabilities 

are also described by Raiffa [1968], Hampton et al. [1973], Moore and 

Thomas [1975], and Sinn [1983]. 
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3. Evaluation functions 

Once the probabilities of the states of nature are established 

objectively or subjectively, it is possible to compare all possible 

alternatives by an evaluation function. There are four main types of 

evaluation functions that have been proposed: maximum expected value 

criterion, lexicographic criterion, expected utility criterion, and two-

parametric substitutive criteria. 

a. Maximum expected value criterion An important advantage of a 

maximum expected value criterion is the utilization of the probabilities 

of the states of nature and of all the payoffs of strategies. This 

approach to decision making does not exclude the possibility that another 

strategy may be preferable to the selected one under some states of 

nature. However, it does ensure that if many similar decisions are taken 

(payoffs and probabilities changing from problem to problem), the decision 

maker will do better in the long run than if he has employed the ignorance 

criterion [Kmietowicz and Pearman 1981]. 

A major criticism of the maximum expected value criterion is its 

unsuitability for unique and important decisions. Here the worst outcome 

of the selected strategy (if it occurs) may well ruin the decision maker 

financially, and it is no consolation for him to know that the strategy 

also contains a number of very attractive outcomes. Moreover, if a 

particular decision can be ruinous, there will be no possibility of 

offsetting the loss in the long run. Even if the loss can be sustained, 

it may take a long time to make it up. 

Another criticism of the expected value criterion concerns the 
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determination of the subjective probabilities of states of nature. It is 

argued that in many decision problems the decision maker is unable to 

specify the probabilities with any accuracy because of the uncertainty 

surrounding future events. 

b. Lexicographic criterion Under this criterion, the decision 

maker is supposed to maximize the probabilities of the final payoffs 

exceeding some critical levels. The theory of lexicographic evaluation 

functions was developed by Roy [Sinn 1983], and extended by Encarnaclon 

[1965]. 

c. Expected-utllity criterion By means of a suitably chosen 

monotonically increasing index function, the payoff values are transformed 

into utilities. The mathematical expectation of these utility values 

serves as the evaluation function. The idea of expected utility criterion 

was developed by Bernouilli [1738]. The axiomatic foundation was 

developed by von Neumann and Morgenstern [1947]. 

d. Two-parametric substitutive criteria Two-parametric 

substitutive criteria are also called certainty equivalent criteria. From 

the probability distribution, two characteristic numbers are generated for 

each strategy to indicate the central tendency and dispersion of payoff 

values. The numbers are then evaluated by means of a substitutive 

evaluation function. Often, the evaluation function is illustrated 

graphically in a diagram by means of indifference curves. In addition to 

the indifference curves, the diagram contains an opportunity locus 

consisting of a number of points, each of which represents one possible 

strategy. The best strategy is then able to be identified. 
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Several two-parametric substitutive criteria have been developed 

using different statistical measures for the central tendency and 

dispersion. Lange [1943] used the mode and the range as the measures of 

central tendency and dispersion, respectively. Domar and Musgrave [1944] 

used the mean value as the measure of central tendency. As for the 

dispersion, they considered the expected value of all possible losses. 

Fisher [1906] suggested an evaluation function that included the mean 

value and the standard deviation. Later, this approach was also discussed 

by Hicks [1933], Marschak [1938], Steindl [1941], Tintner [1941], and Lutz 

and Lutz [1951]. Thomas [1958] ranked the mean-standard deviation 

combinations of the alternatives according to a family of parallel, linear 

indifference curves to maximize the certainty equivalent, v: 

V = y - A * 

where A = a constant coefficient of risk aversion 

U = the mean value 

o = the standard deviation 

Since, according to the mean-standard deviation evaluation function it 

does not matter whether changes in dispersion occur in the range of gain 

or loss, Markowitz [1970] suggested replacing the standard deviation by 

the semivariance which takes only the possible losses into account. 

Constant [1983] applied the mean-standard deviation criteria to the 

context of uncertainty where a set of equal probabilities was assumed. By 

assuming that the coefficient of risk aversion is a product of a constant 

angular coefficient and the minimum attractive rate of return. Constant 

was able to determine the value of the angular coefficient. The final 

decision was then based on the incremental rates of return which is 
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calculated from the following equation: 

v  =  0  =  X  +  a * m * ®  

where v = the mean-standard deviation combination index 

X = the mean value 

a = the constant angular coefficient 

m = the rates of return 

a - the standard deviation 

C. Decision Making Under Incomplete Knowledge 

In many practical decision problems, it is impossible to obtain 

estimates of the probabilities of future states of nature. However, the 

decision maker may have some information indicating that some states of 

nature are more likely to occur than others. This situation is referred 

to as decision making under incomplete knowledge. 

Decision making models under incomplete knowledge can be split into 

two schools. The first school uses the step theory of probability or the 

expected probability to calculate an equivalent objective probability of 

each state of nature, thus reducing decision making under incomplete 

knowledge to a decision problem under risk. The step theory concept was 

first developed by Reichenbach [Sinn 1983] and later extended by Tintner 

[1941]. The basic idea of this theory is to transfer imprecise 

information, i.e., probabilities, into equivalent objective probabilities 

through a series of step transformations. 

The expected probability distribution was developed by Agunwamba 

[1981]. Here, the uniform distribution is applied to the possible 

probability regions under the constraint of the probability of the 
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hierarchies, thus obtaining the expected probability for each state of 

nature. Despite the fact that the probability distribution is an 

equivalent objective probability from the step function or an expected 

probability distribution, the problem still reduces to decision making 

under risk. 

Instead of trying to establish an objective probability distribution 

from incomplete knowledge, an alternate approach was developed by Fishburn 

[1964]. By assuming that some knowledge of probabilities of states of 

nature is available in the form of a rank order of these probabilities 

(i.e., weak ranking of probabilities), Fishburn used this rank order of 

probabilities together with the payoff values of various states of nature 

to test whether the expected value of one particular strategy will always 

be greater than the expected value of an alternative strategy. In other 

words, Fishburn tested whether or not one strategy is statistically 

dominant over another (i.e., strict dominance). 

By employing linear programming concepts. Cannon and Kmietowicz 

[1974] derived a partial average technique for determining the minimum and 

maximum expected values for any strategy under weak ranking of 

probabilities for various states of nature. Weak ranking of probabilities 

assumes the decision maker is only able to rank the probabilities of 

possible states of nature according to their likelihood to occur. 

Comparing these minimum and maximum expected values to the decision 

criteria under uncertainty, they showed that a decision maker who employs 

the extreme expected value method to guide his choice among strategies 

(rather than rely on pure maximum and minimum payoffs) makes better 
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business decisions in the long run because the method takes full advantage 

of all the information available to the decision maker, including 

intermediate payoffs. 

Kmietowicz and Pearman [1981] extended the partial average technique 

for determining the minimum and maximum expected value to a strict ranking 

of incomplete knowledge. The strict ranking of probabilities assumes that 

successive probabilities differ from each other by at least a given 

amount. 

Since the expected values for each strategy are expressed in a range 

of the expected value, Kmietowicz and Pearman [1981] developed a new 

criterion of weak statistical dominance to extend the use of the maximum 

and minimum expected values. The weak statistical dominance is defined as 

follows : 

For two strategy and 82» calculate the differences between the 

expected values of and 82 for all possible corner boundary points. 

If Max{E(Sj^)-E(S2)} > Max{E(S2)-E(sp}, then it can be said that 

strategy 8j^ dominates 82 weakly. 

Kmietowicz and Pearman [1976] also considered a second parameter, the 

dispersion of the potential payoff values, as another criterion in 

choosing among alternatives. By using the variance as an index of 

dispersion, Kmietowicz and Pearman stated that only the corner point 

solutions needed to be considered in order to search for the maximum and 

minimum variance under weak ranking of probabilities. Kmietowicz and 

Pearman also discussed how the maximum variance might be used in practice. 

Agunwamba [1980] pointed out an error by Kmietowicz and Pearman who 
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ignored the existence of a special case. The special case was that 

solutions may exist inside the feasible region if there are only two 

distinct payoff values for n states of nature (n 2 3)« However, Agunwamba 

proved that there still exists a corner solution with maximum variance 

even if solutions exist inside the feasible region. Therefore, it is 

still correct to state that only the corner points needed to be considered 

in searching for the maximum and minimum variance under weak ranking of 

probabilities. 

The search for the maximum and minimum variance under strict ranking 

was not studied by either Kmietowicz and Pearman, or Agunwamba. 

Kmietowicz and Pearman [1981] also incorporated the expected value 

and variance into a single index with a trade-off coefficient between the 

expected value and variance under a weak ranking of probabilities. 

Kmietowicz and Pearman concluded that the assessment of the extreme values 

of such an index under weak ranking must proceed in the following way. If 

there are more than two distinct payoffs, only corner points can be 

optimal; if there are only two distinct payoff values, it is possible that 

a solution exists inside the feasible region. Hence, additional effort is 

required to search for the solution inside the feasible region which 

maximizes or minimizes the index of utility. However, depending on the 

relationship between the payoff values and the value of the coefficient of 

risk aversion, it need not always be the case that a solution inside the 

feasible region can exist for two distinct payoffs. Kmietowicz and 

Pearman did not extend their search for the extreme index to the case of 

strict ranking. 
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ITI. EXTREME VARIANCES OF PAYOFFS UNDER STRICT RANKING 

One of the objectives in this research is to search for a set of 

probability values under strict ranking that cause the extreme values of 

the variance (maximum and minimum values). The objective function used to 

search for the extreme values is as follows: 

n n 

VAR = [ ?! * - ( % ?! * Xi )2 
i=l i=l 

In Section A, transformations take place that facilitate the search 

for the extreme values of the variance. In essence, the strict ranking 

constraints for the probabilities form the minimum requirements for the 

probabilities defined as M. Hence, 

?! = Ml + 

where = Probability assigned to state of nature i 

Mj. = Minimum requirement of probability for state of nature i 

= Difference between the probability assigned and the 

minimum requirement for state of nature i 

Subsequent transformations include T values which reflect the differences 

between the D values for each succeeding state of nature: 

Ti = Di - 0% 

Tn = Dn - D^+i (where D^+i = 0) 

In order to keep the constraints of strict ranking, each D value must be 

greater than the succeeding D value. This can be done by limiting the T 

values to be not less than zero. 

This transformation permits the function for the variance to be 

expressed in terms of T rather than P. It also simplifies the strict 
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ranking constraints because all the requirements for P are now implied in 

T. The M terms are treated as constants in the objective function. 

Section B examines the objective function with its constraints and 

recognizes it as a quadratic function subject to two linear constraints. 

The two linear constraints define the feasible region (combination of all 

feasible solutions) where the extreme values of the variance (maximum and 

minimum values) can lie. 

The negative quadratic term in the objective function dictates that 

the objective function is concave indicating that any relative extreme of 

the function must be a relative maximum. No relative minimum exists under 

any condition for the defined objective function. Therefore, the global 

minimum always occurs at one of the corner boundary points of the feasible 

region. 

Section C describes the general approach that is used to search for 

the global maximum for the variance. Using a Lagrange multiplier and 

partial differentiation, a system of linear equations is formed. Any 

solution to the system of linear equations must be the relative maximum 

referred to in Section B. However, the system of equations may have no 

solution indicating that no relative maximum exists, one single solution 

(one relative maximum), or multiple solutions (multiple relative maximums) 

of equal value. 

No solution One solution Multiple solutions 
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If a relative maximum formed by the concave function exists within the 

feasible region, it is also a global maximum. If no relative maximum 

exists, or the relative maximum(s) of the concave function lies outside 

of the feasible region, then the global maximum occurs at one of the 

corner boundary points of the feasible region. These corner boundary 

points are subsequently referred to as "corner solutions". 

feasible ->•1 

region j 
kfeasible 

j region 

Relative maximum occurs inside Relative maximum occurs outside 

of the feasible region. of the feasible region. 

(relative maximum = global maximum) (relative maximum f global maximum) 

In Section D, the objective function of the variance takes into 

consideration two possible states of nature. By applying the solving 

algorithm of the Lagrange multiplier and partial differentiation, it is 

possible to solve for the two T values of a single solution. Because one 

of the T values is negative, it can be concluded that the single relative 

maximum occurs outside of the feasible region. Hence, the global maximum 

and global minimum must occur at one of the corner boundary points of the 

feasible region. 

In Section E, the objective function of the variance takes into 

consideration three possible states of nature. Using the same solving 

algorithm as in Section D, it is shown that the coefficient matrix for the 

system of equations is found to be zero. For a system of equations with 

zero determinant of the coefficient matrix, the system of equations has 



www.manaraa.com

21 

either no solution if the equations are contradictory to one another 

(Insolvable), or multiple solutions if the equations are consistent 

(solvable). 

It is shown that the equations are contradictory when all the three 

payoff values differ. This implies that a relative maximum does not 

exist. The global maximum must occur at the corner boundary points when 

there are three distinct payoff values. 

The system of equations are consistent when one or two payoff values 

exist. This implies that multiple relative maximums exist. However, 

these multiple relative maximums may be located either inside or outside 

of the feasible region. If at least one relative maximum is located 

inside the feasible region, the relative maximum is the global maximum. 

If all the relative maximums are located outside the feasible region, the 

global maximum must occur at the corner boundary points. 

In Section F, the objective function of the variances takes into 

consideration more than two states of nature. Using the same solving 

algorithm, a system of n+1 equations is formed. The determinant of the 

coefficient matrix for the system of equations is found to be zero. 

Therefore, the system of equations has either no solution if the equations 

are contradictory to one another (insolvable conditions), or multiple 

solutions if the equations are consistent (solvable condition). 

Solvable conditions for n states of nature are then dictated by 

Theorem I. For the system of equations to be solvable. Theorem I proves 

that there can be at most two distinct payoff values. Therefore, the 

global maximum must occur at the corner boundary points if there are more 
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than two distinct payoff values. If there is only one payoff value, the 

variance is always equal to zero. 

If there are two distinct payoff values, multiple relative maximums 

of equal value can exist. The necessary conditions for the existence of 

at least one relative maximum inside the feasible region are developed. 

If the necessary conditions are not met, the global maximum must occur at 

one of the corner boundary points. 

If the necessary conditions are met, it is possible that a relative 

maximum(s) exists inside the feasible region. The multiple relative 

maximums can be located by a pair of linear equations. Any solution to 

the pair of linear equations results in a relative maximum. The multiple 

relative maximums have a common value of the variance which can be 

calculated directly. However, only the relative maximum(s) inside the 

feasible region defines the global maximum(s). In case that none of the 

multiple relative maximums is located inside the feasible region, the 

global maximum must occur at one of the corner boundary points. 

Expressed as a two dimensional plane, the concave function has a flat 

top as shown in the following diagram. 

I 
-feasible^/ 

region 

1 

-feasible 

region ! 

At least one of the multiple 

relative maximums of equal value 

exists inside of the feasible 

region. 

All multiple relative maximums of 

equal value exist outside of the 

feasible region. 
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A numerical example is provided to demonstrate the procedure for 

searching for the multiple relative maximum points. 

A. Transformation of Objective Function and Constraints 

The objective function used to search for the extreme variance under 

both weak and strict ranking is: 

n n n 

VAR = I  Pj * [X, - EXP]2 = I  P, * - ( I ?! * ) 
1=1 1=1 1=1 

where VAR = variance of payoff values under a set of probabilities 

EXP = expected value of payoffs under a set of probabilities 

P^ = probabilities assigned to state of nature 1 

X^ = payoff of state of nature i 

n = number of possible states of nature 

Setting the payoffs as constants under specified states of nature, the 

objective is to find the set of probabilities, P = (P^, P2, •••, P^), 

under which the extreme variances occur. The constraints of the 

probabilities under strict ranking are: 

n 

I Pi = 1 
1=1 

P^ - P^+i kj. (for 1 = 1, 2, ... , n-1, n) 

P^ 2 0 (for 1=1,2,... , n-1, n) 

k^ 2 0 (for 1=1, 2, ... , n-1, n) 

The minimum requirements of probabilities for state of nature 1 under 

strict ranking are symbolized as 

Mn = Min( P^ ) = k^ 

"n-1 = Min(Pn-l) = ^n + K-l 
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Mi+1 = Min(Pi+l) = k* + + ... + k^+i 

= Min( ?! ) = + k^.^ + ... + k^+i + kj^ 

Mg = Mln( P3 ) = k^ + kjj_j + ... + k^ + kg 

Mg = Min( ^2 ) = + k^_j^ + ... + k^ + kg + k2 

= Min( Pj ) = k^ + k^.^ + ... + k^ + kg + k2 + kj^ 

The summation of all the minimum requirements of probabilities can be 

symbolized as Cg: 

n n 

Cq = I Mi = (1 * kj) + (2 * kg) + + (n * k^) = I i * ki 
i=l i=l 

Let be denoted as the difference between the probability assigned to 

the state of nature i and its respective minimum requirement. Therefore, 

Pi = + Di (for i = 1, 2, n-1, n) 

Then the equation for calculating the variance can be rewritten as; 

n „ n 
VAR = y Pi * - [ I Pi * ] 

i=l i=l 

=  I  (Mi + Di) * Xi^ - [ % (Mi + Di) * Xi 
i=l i=l 

= I Mi Xi^ + I Di - [ I Mi Xi + I Di Xi ]2 
i=l i=l i=l i=l 

= I Mi Xi? + I Di Xi^ - [ I Mi Xi ]2 - [ I Di Xi 
i=l i=l i=l i=l 

n n 

- 2 * [ I Mi Xi ] * [ I Di Xi ] 
i=l i=l 
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Notice that the minimum requirements for the probabilities, M^, are common 

to all possible probability combinations under strict ranking. The terms 

composed of in the above equation are inactive in searching for the 

extreme variances. Hence, the terms composed of and can be defined 

as constants: 

n 

Cj = I  
i=l 

C2 = Ï «1 
i=l 

Then the equation to calculate the variance can be written as: 

n n n 

VAR = 0% + I X^^ - X^ - 2C^ [ I ] 
i=l 1=1 i=l 

This equation can be greatly simplified by employing the transformations 

which were introduced by Kmietowicz and Pearman [1981]: 

Let T^ = (for i = 1, 2, ..., n and 0^+% = 0) 

i 
= 1 Xj (for i = 1, 2, ..., n) 
j=l 

Z, = % X^^ (for i = 1, 2, ..., n) 
j=l 

n 

Then, % X^ = 0^ X^ + Dg Xg + Dg Xg + ... + X^ 
i=l 

= [(DpD2) + (D2-D3) + (Dg-D^) + ... + ^1 

+ [(D2-D3) + (D3-D4) + ... + (Dn-D^+i)] Xg 

+ [(D3-D4) + ... + (Dn-Dn+l)] ̂ 3 
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= [Ti + Tg + T] + ... + T^] Xj 

+ [T2 + T3 + ... + Tjj] X2 

+ [T3 + ... + Tj^] X3 

i 
n 

= Ti Xi + Tg (X^+Xg) + T3 (X1+X2+X3) + + X^ 
1=1 

- Ti Ï1 + T2 Y2 + T3 Y3 + + T„ ï„ 

- Î ?! ?i 
1=1 

Using the same transformation, the following results were also obtained. 

n n 

I Di}^2= I Ti Zi 
i=l i=l 

n n 

I Di = I i * Ti 
1=1 1=1 

The transformed objection function for calculating the variance is 

rewritten as: 

n n n 

VAR = Co + I T. Z. - C/ - [ I T. - 2C, [ I T. Y.] (Eq. 3-1) 
^ i=l i=l 1=1 

As for the constraints: 

n n n n n 

Since, I P. = I (M. + D.) = % M. + I = Cq + I i * = 1 
1=1 1=1 1=1 1=1 1=1 

n 
then, % i * T^ = 1 - Cq (Eq. 3-2) 

1=1 

Because 2l ^1 (for 1 = 1, 2, ..., n) 

(Mi+Di) - (Mi+l+Di+i) > ki 

(Mi-Mi+i) + (Di-Di+i) > ki 
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[(kn + + ̂ i+l + ki)-(kn + + + (0^-0^+^) > 

ki + (Di - Di+l) 1 ki 

then, >_ 0 

i.e., ^ 0 (for 1 = 1, 2 n) (Eq. 3-3) 

The transformed objective function and constraints in the search for 

the extreme variances under strict ranking are summarized as functions of 

T, where T is a n-component vector (T^, T2, •••> T^). 

Maximizing or minimizing 

n n n 

VAR = Cg + I Ti Zi - - [ I Tjl - 2C^ [ I ] 
1=1 1=1 1=1 

(Eq. 3-1) 

Subject to 

n 
I 1 * = 1 - Cq (Eq. 3-2) 

1=1 

2 0 (for 1=1, 2, 3, ..., n) (Eq. 3-3) 

Notice that all of the k^'s are set equal to zero under weak ranking. 

Hence, the minimum requirement of probabilities, , for all states of 

nature are equal to zero. As a result, the constants (Cq, Cj^, and C2) 

which are composed of are equal to zero. Therefore, Eq. 3-1 can be 

rewritten as the following equation for weak ranking. 

n n 

VAR = I Ti Zi - [ % Ti Yi 
1=1 1=1 

Under weak ranking, Eq. 3-2 becomes, 

I 1 * T  ̂ = 1 
1=1 



www.manaraa.com

28 

The above two equations are the same as the objective function and 

constraint derived by Kmletowlcz and Pearman [1976]. Therefore, searching 

for the extreme variances under weak ranking is a special case of the 

problem under strict ranking where all of the k^'s (1=1, 2, n) are 

set equal to zero. 

B. Nature of Transformed Objective Function and Constraints 

Since the objective function is a quadratic function and the 

constraints are linear equations, the problem to be solved is in the form 

of quadratic programming. The objective function is formed by one 

n 

quadratic term, -[ % T^Y^] , together with linear terms and constants. 
1=1 

Since this quadratic form is always less than or equal to zero, it is 

defined as negative semldefInite. Any negative semidefinite quadratic 

form is a concave function over all of Euclidean n-dimensional space, 

[Theorem 3.4, Simmons 1975]. In addition, the linear terms are both 

convex and concave over all of E^ [Theorem 3.1, Simmons 1975]. The sum of 

two or more concave functions is concave [Theorem 3.3, Simmons 1975]. 

Therefore, the objective function, which is the sum of one concave 

quadratic term and several linear terms, is a concave function over all of 

E^. As a result, a relative extreme point must be a relative maximum if 

such a relative extreme point exists. 

A feasible solution is a solution for which all the constraints are 

satisfied. A feasible region is a collection of all feasible solutions. 

The equality constraint, Eq. 3-2, defines the feasible region as a 
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hyperplane in E". A hyperplane in n-space Is a convex set and is 

analogous to the line in two-dimensional space and the plane in three-

dimensional space. The n non-negativity constraints, Eq. 3-3, confine the 

feasible region into n closed positive half-spaces (which are convex sets 

as well). The feasible region is then the intersection of the hyperplane 

and the n closed positive half-spaces. Since the intersection of any two 

convex sets must itself be convex, these constraints together define the 

feasible region for this problem as a closed convex set. 

C. General Approach to Search for Extreme Variances 

Since the objective function of the variance is concave over all of 

E^, the global maximum of the variance within the feasible region may 

either be determined by the relative maximum(s) if it exists inside the 

feasible region, or be located at boundary points of the feasible region. 

The global minimum of the variance within the feasible region must occur 

at the boundary points because no relative minimum exists. 

In searching for the global extremes (maximum and minimum), it is 

interesting to examine the characteristics of the boundary points of the 

feasible region. For an n-dimensional problem, there are n boundaries 

that form the feasible region because the feasible region is a hyperplane 

confined by n half-spaces. Each boundary consists of feasible solutions 

which lie on the intersection of the hyperplane and at least one half-

space. Since the hyperplane and the half-spaces are all closed convex 

sets, the boundary itself is a closed convex set. Considering one single 
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boundary as if it were the only feasible region, at least one global 

extreme occurs at the "boundary points" of this boundary [Theorem 3.8, 

Simmons 1975]. The reasoning can be repeated until the corner boundary 

points of the feasible region are reached. Therefore, consideration of 

all boundary points has been reduced to only the corner boundary points in 

searching for the global extremes. 

A corner boundary point lies at the intersection of n constraint 

boundaries. Because of the equality constraint Eq. 3-2 and the n non-

negativity constraints Eq. 3-3, a total of n+1 corner boundary points are 

possible. However, the intersection point of n non-negativity constraint 

boundaries is located outside the feasible region since it violates Eq. 

3-2. Therefore, there are n corner boundary points for the feasible 

region. The n corner boundary points are characterized by having only one 

T^ value that satisfies Eq. 3-2, keeping all the other n-1 T^ values at 

zero. Expressed in equations, the n corner boundary points for the 

feasible region are: 

T^ = (l-CQ)/i (for i = 1, 2, ..., or n) 

Tj = 0 (for j = 1, 2, ..., n; but j^i) 

To locate the relative maximum for the constrained quadratic 

programming problem, the method of Lagrange multipliers can be used. By 

Introducing a Lagrange multiplier, the objective function is combined with 

the constraint (not including the non-negativity constraints) into a 

Lagrange function. 

Setting the first partial derivatives of the Lagrange function equal 

to zero, a system of n+1 linear equations of n variables (T^'s) and the 

Lagrange multiplier is generated. A solution that satisfies the system of 
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n+1 equations is a relative maximum of the original quadratic programming 

problem. Since there are n+1 equations for n+1 unknowns (T^'s and the 

Lagrange multiplier), only one relative maximum exists in E" if the n+1 

linear equations are independent of one another. However, if some of the 

n+1 equations are dependent on one another (in which case the determinant 

of the coefficient matrix will be equal to zero), either no relative 

maximum or multiple relative maximums exists in Since the Lagrange 

function ignores the non-negativity constraints, the relative raaximum(s) 

may be located outside the feasible region. 

Therefore, there are three possible situations in searching for the 

global maximum: 

a) If at least one relative maximum exists within the feasible 

region, the constrained relative maximum(s) must be a global maximum(s) 

over the feasible region [Theorem 3.7, Simmons 1975]. 

b) If a relative maximum(s) exists, but the relative maximum(s) is 

located outside the feasible region, then the global maximums must occur 

at the corner boundary points. 

c) If there is no relative maximum, then the global maximum must 

occur at the corner boundary points. 

D. Extreme Variances for Two States of Nature 

The objective function and its constraints for two possible states of 

nature are: 

Maximizing or minimizing 



www.manaraa.com

32 

VAR = Cg + TjZj + TgZg - - [TjYJ+T2Y2]^ - 20^ (T^Yi+TgYg) 

Subject to 

Ti + 2T2 = 1 - Cq 

Ti > 0, Tg > 0 

Since the objective function is concave, the global minimum must occur at 

the corner boundary points. In order to determine the global maximum, it 

is necessary to ascertain whether or not a relative maximum exists inside 

the feasible region. Temporarily ignoring the non-negativity constraints, 

a standard Lagrange function can be formed to search for the relative 

maximum variance. The Lagrange function is: 

L = Cg + TjZj + TgZg - - [T^Yi + TgYgj^ - 2C^ (T^Y^ + TgYg) 

+ X * [1 - Cq - Tj - 2T2] 

= Cg + T^Zi + TgZg - - Ti^Y^Z - Tg^YgZ - 2T^T2Y^Y2 - 2C^T^Y^ . 

- 2CjT2Y2 + X[1 - CQ - TJ - 2T2] 

For a relative maximum to exist, it is necessary that the system of three 

simultaneous equations obtained from the partial derivatives of the 

Lagrange function with respect to T^, T2, and X be solvable [Schmidt 1974, 

p. 326]. 

-- = Zi - 2TjY^2 - 2T2Y1Y2 - 2C^Y^ - X = 0 (Eq. 3-4) 

~- = Zg - 2T2Y2^ - 2T^Y^Y2 - ZC^Yg - 2X = 0 (Eq. 3-5) 

3L 
-- = 1 - Cq - T^ - 2T2 = 0 (Eq. 3-6) 

Multiplied by (Y2/Y1), Eq. 3-4 becomes: 
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Z^(Y2/YI) - = 0 

Subtracting from Eq. 3-5, 

Zg - Z^(Y2/YI) - X(2 - Yg/Yi) = 0 

Multiplying by Yp 

ZgYi - Z^Yg - X(2Yj - Yg) = 0 

Therefore, the value for \ is obtained: 

X = (ZgYi - Z^Yg) / (2Yj - Yg) (Eq. 3-7) 

Substitute the expressions for Tj^ and X (Eq. 3-6 and Eq. 3-7) into Eq. 

3-5, and solve for T2. 

Zg - 2T2Y2^ - 2(1-Co-2T2)YIY2 - ZC^Yg - 2(Z2Yi-ZjY2)/(2Yi-Y2) = 0 

Zg - 2T2Y2^ - 2(1-Cq)YJY2 + 4T2Y1Y2 - 2C^Y2 - 2(Z2Yi-ZjY2)/(2Yi-Y2)=0 

T2(2Y22-4YjY2) = Zg - 2(l-Co)YjY2 - ZC^Yg - 2(Z2Yi-ZjY2)/(2Y^-Y2) 

Substitute Yj^ — ^1* ^2 ~ ^2* ^1 ~ and Zg ~ ^ ^2 * 

T2[2(Xi+X2)2-4Xi(Xi+X2)] = (Xi2+X22) - 2(1-Cq)XI(XI+X2) - 2C^(Xi+X2) 

- 2[(Xi2+x^2)X^_X^2(X^+X2)]/[2Xi-(Xi+X2)] 

T2[2Xj2+2X2^+4XJX2-4X^^-4X^X2] = Xj^ + X2^ - 2Xj^ - 2X^X2 

+ 2CoXi(Xi+X2) - 2C^(Xj+X2) 

- 2 [Xj^+XIX2^-XJ3-XJ2x2] / [2XpXi-X2] 

T2[2X22-2X^2] = X2^ - X^^ - 2X^X2 + 2CQX^(XI+X2) - 2C^(XI+X2) 

- 2[XJX2^-XJ2x2]/[XJ-X2] 

2T2[X2^-Xj2] = X2^ - Xj2 _ 2X1X2 + 2CQXi(Xi+X2) " 2Ci(Xi+X2) + 2X^X2 

SiTgEXgZ-XiZ] = (X^Z-X^Z) + 2CoXi(Xi+X2) - 2Cj^(Xi+X2) 

T2 = 1/2 + 2CqXi(Xi+X2)/2(X2^-Xi2) _ 2C^{Yi^+X2') 

Tg = 1/2 + CQXi/(X2-XI) - Ci/(X2-Xi) 

Recall the definition for Cq and Cp 
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Cq = Ik^ + 2k2 

C2 " + M2X2 ~ (k2^^k2)X2 ^ ̂2^2 

Substituting Cg and , the expression for T2 can be further simplified. 

T2 = 1/2 + (ki+2k2)Xi/(X2-Xi) - [(kj+k2)Xi+k2X2]/(X2-Xi) 

= 1/2 + Ik^Xj + 2k2Xj - kjXj - kgX; - kgXg] / (Xg-X^) 

= 1/2 + [k2Xi - k2X2] / (Xg-X^) 

= 1/2 - [k2(X2-xp] / (X2-X1) 

=  1 / 2  -  k 2  

Tl 

• 2T2 = 1 - CQ, 

0
 

0
 CM 

H
 

C
M

 1 

1  - k l  

1 

N
J 1 

-^1 

A single solution (T^ = -k^, T2 = 1/2- k2) results from the system of 

three equations causing a single relative maximum point. Because = -k^ 

and kj ̂  0, is always less than or equal to zero which is contrary to 

the non-negativity constraint of (Eq. 3-3). Hence, the single relative 

maximum must be located outside the feasible region. As a result, both 

the global maximum and minimum variance for two states of nature always 

occurs at the corner boundary points. 

E. Extreme Variances for Three States of Nature 

Before extending the case of two states of nature to the case of n 

states of nature, it is interesting to examine the case of three states of 

nature because it represents the simplest form of the n-dimensional case. 
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The objective function and its constraints for three states of nature are 

Maximizing or minimizing 

VAR = Cg+TiZi+TgZg+TgZg-CiZ-tTiYi+TgYg+TgYgjZ-ZCiCTiYi+TgYz+TsYs) 

Subject to 

+ ZTg + 3T3 = 1 - Cq 

Ti > 0, T2 > 0, T3 > 0 

Since the objective function is concave over all of E^, the global 

maximum variance within the feasible region may either be determined by 

the relative maximura(s) if it exists inside the feasible region, or be 

located at boundary points of the feasible region. The global minimum 

variance within the feasible region must occur at the boundary points 

because no relative minimum exists. 

1. Lagrange function 

The method of Lagrange multiplier is used to search for the relative 

maximum(s). Temporarily ignoring the non-negativity constraints, a 

standard Lagrange function can be formed. 

L = C2+T^ZJ+T2Z2+T3Z3-CJ2-[T^YJ+T2Y2+T3Y3]2-2CJ(T^Y^+T2Y2+T3Y3) 

+ A[1-CQ-TJ^-2T2-3T3] 

= C2+TlZl+T2Z2+T3Z3-Cl2-Tl2Tl2-T2^Y2^-T3^Y3^-2TlT2YlY2-2TlT3?l?3 

-2T2T3Y2Y3-2C^T^Y^-2C^T2Y2-2CjT3Y3 + X[l-Co-Ti-2T2-3T3] 

For a relative maximum to exist, it is necessary that the four 

simultaneous equations obtained from the partial derivatives of the 

Lagrange function with respect to T^, T2, T3, and A be solvable [Schmidt 

1974]. 
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iî" • h - - 'Vih - ̂ hV3 - - X - 0 
(Eq. 3-8) 

iî" = ̂ 2 - 2T2?2^ - 2?1?1?2 " 2T3?2?3 " " 2X = 0 (Eq. 3-9) 

= Z3 - 2T3Y32 - 2TjYjY3 - 2T2Y2Y3 - 2C1Y3 - 3X = 0 (Eq. 3-10) 

dL 
ax = 1 - Co - ?! - 2T2 - 3T3 = 0 (Eq. 3-11) 

Eqs. 3-8, 3-9, 3-10, and 3-11 can be written in the form of matrixes: 

9L 

âï; Zl 

9L_ 

9T2 

II 

^2 

9L 

913 
Z3 

3L 

9X 

1 

2Yi^ 2Y^Y2 2Y1Y3 1 

ZY^Yg 2Y2^ 2Y2Y3 2 

2Y1Y3 2Y2Y3 2Y3< 3 

" 

1 1 1 1 

Tl 2CiYi 0 

^2 2C1Y2 0 

T3 2C1Y3 0 

1 
>

• 0
 

0
 

» 1 
0
 

Rearrange the matrix equation. 

2Y^2 2Y^Y2 2Y1Y3 1 Tl Zl-ZCi?! 

ZY^Yg 2^2% 2Y2Y3 2 ^2 Z2-2C1Y2 

2Y^Y3 2Y2Y3 2Y32 3 T3 Z3-2C1Y3 

12 3 0 A I-Cq 

Divide the first three rows by 2Yp SlYg,, and 2Y3, respectively. 
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?2 ?3 

?2 ?3 

?2 ?3 

l/2Yi 

2/2Y2 

3/2Y3 

0 

(Zi/2Yi)-Ci 

(Z2/2Y2)-CI 

(Z3/2Y3)-CI 

1-Cr  

Subtract rows 2 and 3 by row 1, respectively, 

l/2Yj ^2 Y 

0 0 0 

0 0 0 

1 2 3 1-Cr  

The determinant of the four by four coefficient matrix is calculated as; 

(Zi/2Yi)-Ci 

(Z2/2Y2)-(Zj/2Yp 

(Z3/2Y3)-(Zj/2Yi) 

0 0 0 Yi Yg Y3 

(l/2Yi) 0 0 0 + [(2/2Y2)-(l/2Yp] 0 0 0 

1 2 3 1 2 3 

?! ^2 ?3 Yi Yg Y 

[(3/2Y3)-(1/2Yj)] 0 0 0 + 0 0 0 0 

1 2 3 0 0 0 

= -(l/2Yp(0) + [(2/2Y2)-(1/2Y^)](0) - [(3/2Y3)-(l/2Yi)] (0) + 0(0) 

= 0 

The singular coefficient matrix implies that the system of four equations 

as a result of the partial derivatives has either no solution or multiple 

solutions. The system of equations has no solution when these equations 
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are contradictory to one another (insolvable conditions). On the other 

hand, if these equations are consistent (solvable conditions), the system 

of equations has multiple solutions. 

For example, the following system of equations is said to be solvable 

because numerous sets of X values can be found that can be simultaneously 

applied to both equations: 

Xj + 2X2 = 3 

2Xj + 4X2 = 6 

Furthermore, a system of equations is said to be insolvable because no set 

of X values can be found that satisfy both equations; 

Xj + 2X2 = 3 

2Xj + 4X2 = 11 

2. Solvable conditions for three states of nature 

It is important to recognize the conditions for which the system of 

equations has no solution (Insolvable conditions) or multiple solutions 

(solvable conditions). If the system of equations is insolvable, no 

relative maximum exists. If the system of equation is solvable, there are 

multiple relative maximums of equal value. 

Eqs. 3-8, 3-9, and 3-10 can be simplified by dividing the three 

equations by , Y2, and Y^, respectively. The results are: 

(Eq. 3-12) 

(Eq. 3-13) 

(Eq. 3-14) 

From the three equations, it is observed that the coefficients for 



www.manaraa.com

39 

Tp T2, and Tg are all identical, and only the constants and the 

coefficients for X are different. Therefore, three results of X can be 

derived from Eqs. 3-12, 3-13, and 3-14 (one result from each pair of 

equations). In order to determine if these three equations are 

consistent, it is necessary to examine the three resulting values of X. 

If these three values of X are identical, the three equations (Eqs. 3-12, 

3-13, and 3-14; or equivalently Eqs. 3-8, 3-9, and 3-10) are consistent. 

And the system of three equations is solvable as a result. If these three 

values of X are not identical, the three equations are contradictory to 

one another. And the system of equations is insolvable. 

The first result, X^, can be derived by subtracting Eq. 3-12 from Eq. 

3-13. 

Z2/Y2 - Z^/Yi - 2X/Y2 + X/Yi = 0 

Xi = [ZgYi-ZiYz] / [2Y1-Y2] 

= [ (Xj2+X22) (XJ) - (X I2) (XJ+X2)]  /  [2 (Xj ) - (X i+X2) ]  

= [XiX2(X2-Xi)] / [X1-X2] 

= - X1X2 

The second result, X2» can be derived by subtracting Eq. 3-12 from Eq. 

3-14. 

Z3/Y3 - Z^/Yi - 3X/Y3 + X/Yj = 0 

h = [Z3Y1-Z1Y3] / [3Y^-Y3] 

= [(Xj2+X22+X32)(Xi)-(Xj2)(Xj+X2+X3)] / [3(Xi)-(X^+X2+X3)] 

= [XjX2(X2-X^)+X^X3(X3-Xp] / [(XpX2)+(Xj-X3)] 

The third result, X3, can be derived by subtracting Eq. 3-13 from Eq. 

3-14. 
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Z3/Y3 - Zg/Yg - 3X/Y3 + 2A/Y2 = 0 

X3 = [Z3Y2-Z2Y3] / [3Y2-2Y3] 

[(Xi2+X22+X32)(Xi+X2)-(Xi2+X22)(Xi+X2+X3)] 

[3(Xi+X2)-2(Xi+X2+X3)] 

= IXjX3(X3-Xi)+X2X3(X3-X2)] / [(Xi-X3)+(X2-X3)] 

Examining the expressions for the three results, it is observed that 

1) the three results are not identical in value if Xj, X2, and X3 are all 

different from one another; 2) the three results will be identical in 

value only for any one of the following four special conditions: 

a» X^ ® X2 ~ X3 

b # X^ ~ X21 and X^ ^ X3 

c« X^ " X3, and Xj^ ^ X2 

da X2 ™ X3, and X^ 5^ Xg 

Notice that these four special conditions could also be described as 

having only one or two distinct payoff values. Therefore, Eqs. 3-8, 3-9, 

and 3-10 are consistent if there are only one or two distinct payoff 

values. In other words, the system of equations is solvable if there are 

only one or two distinct payoff values for three states of nature. On the 

other hand, Eqs. 3-8, 3-9, and 3-10 are contradictory if there are three 

distinct payoff values. In other words, the system of equations is 

insolvable if there are more than two distinct payoff values. 

3. Summary of solutions for three states of nature 

For three states of nature, the global minimum variance always occurs 

at the corner boundary points. If all three payoff values are different. 
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the global maximum variance will also occur at the corner boundary points 

since no relative maximum exists. If there are only 1 or 2 distinct 

payoff values, multiple relative maximums exist. The global maximum will 

be determined by the relative maximum which is located inside the feasible 

region. The global maximum will still occur at the corner boundary points 

if all the relative maximums are located outside the feasible region. 

F. Extreme Variances for N States of Nature 

The objective function and constraints in the search for the extreme 

variances for n states of nature (where n ̂  3) under strict ranking are: 

Maximizing or minimizing 

n n n 

VAR = Cg + I ?! Zi - Ci^ - [ % T^ - 20^ [ I T^ ] 
i=l i=l 1=1 

(Eq. 3-1) 

Subject to 

n 

I i * = 1 - Cq (Eq. 3-2) 
i=l 

Tj^ 2 0 (for i = 1, 2, 3 n) (Eq. 3-3) 

Since the objective function is concave, no relative minimum exists. 

The global minimum must occur at the corner boundary points. In order to 

determine the global maximum, it is necessary to ascertain whether or not 

a relative maximum exists inside the feasible region. A Lagrange function 

is used to search for the relative maximum(s). 
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1. Lagrange function 

The appropriate Lagrange function for n states of nature is; 

n n n n 

L = Cg + I T^Zi - - [ I - 2C^[ % + XII-Cq- I iT^] 
i=l i=l i=l i=l 

For a relative maximum to exist, it is necessary that the system of n+1 

simultaneous linear equations obtained from the partial derivatives of the 

Lagrange function with respect to the values (i = 1, 2, 3, ... , n) and 

to X ,  be solvable for and X  [Schmidt 1974]. That is, it must be 

possible to solve the following n+1 equations simultaneously: 

8L ^ 
--- = Zj - 2Y. I T.Y. - ZCjY^ - iA = 0 (1= 1, 2, ... n) (Eq. 3-15) 
9T^ j=l J J 

3L ^ ^ 
-- = 1 - Cg - % iTi = 0 or I iT^ = 1 - CQ (Eq. 3-2) 
àX i=l 1=1 

Eqs. 3-15 and 3-2 can be written in the form of matrixes; 

9L_ 

iij 
Zl ZY^Z 2Y^Y2 ... 2?l?n 1 Tl 2CiYi 0 

3L 

3T2 
Z2 2?1?2 ZYgZ 2 

^2 2Cl?2 0 

• • 

" 

• 

• 

• • • • • 

3L 
Zn ZYgYn ... 2Y^2 n Tn 2Cl?n 0 

3L 

iÂ 
1 1 2 n 0 X Co 0 

Rearrange the matrix equation, 
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2YJ2 2YjY2 ... 2Yl?n 1 Tl Zl-2ClYi 

2^2^ ... 2 ^2 Z2-2C1Y2 

. • • • • • 

. • . . . • 

• • • • • • 

2?l?n 2Y2Y„ ... 2Y„2 n Tn Zn-2ClYn 

1 2 n 0 X I-CQ 

Divide the first n rows by ZY^, ZYg, .and ZY^^ respectively. 

YI Y2 ... Y^ l/2YI Tl (ZI/2YI)-CI 

YI YG ... Y^ 2/2Y2 ^2 = 
(Z2/2Y2)-CI 

YI Y2 ... \ 3/2YN Tn (ZN/2YN)-CI 

0
 

0
 

CM 

» 

X 

1 

T
 
0
 

0
 

I 

Subtract rows 2, 3, n by row 1, respectively, 

YJ YG ... Y^ L/2YI Tl (ZI/2YI)-CI 

0 0 ... 0 (2/2Y2)-(L/2Y^) ^2 (Z2/2Y2)-(Z^ / 2YI )  

= 
. 

0 0 ... 0 (N/2YN)-(L/2YI) Tn (ZN/2Y^)-(ZI/2YI) 

1 2 ... n 0 X I-CQ 

The determinant of the (n+1) by (n+1) coefficient matrix must be equal to 

zero [Cofactor method of calculating the determinant, Schmidt 1974]. The 

singular coefficient matrix implies that the system of n+1 equations has 

either no solution or multiple solutions. The system of equations has no 
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solution when these equations are contradictory to one another (insolvable 

conditions). On the other hand, if these equations are consistent 

(solvable conditions), the system of equations has multiple solutions. If 

the system of equations is Insolvable, it means that the relative maximum 

does not exist. If the system of equations is solvable, multiple relative 

maximum of equal value exist. 

2. Solvable conditions for n states of nature 

It is found that the system of n+1 equations is solvable if and only 

if there are at most two distinct payoff values contained among n payoff 

values. This statement is proved as follows, 

THEOREM I; A necessary and sufficient condition for Eqs. 3-15 and 3-2 to 

be solvable is that there are at most two distinct payoff values. 

PROOF; 

Case A: Only one payoff value exists, i.e., = X^ for all i. 

Necessity; If Eqs, 3-15 and 3-2 are solvable, it is possible 

that X^ = Xj^ for all i holds. 

Sufficiency; If Xj^ = Xj for all i (i=l, 2, ..., n), then 

i i 

Y. = I X^ = I X, . iXi 
j=l j=l 

j j 

= I Xj - % = jXi 
s=l S=1 

ZI = I X 2 = I = IX 2 
j=l j=l 



www.manaraa.com

45 

n n n 

Cj = I Mi Xi = I Ml Xi = I Ml = Cq 
1=1 1=1 1=1 

Substituting Y^, Yj, Z^, and Into Eq. 3-15 gives: 

n 

IX^Z - 21Xi I Tj(jXi) - 2(X]^Co)(lXp - IX = 0 

IX^Z - 21X^2 J jTj - 21XJ2 CQ - lA = 0 

Xj^ _ 2X^2 %^jTj - 2X^2 Cq - X = 0 

Subtracting 2X2^ times Eq. 3-2, 

n n 

Xj2 _ 2X^2 I jTj - 2Xj2 Cq - X - 2X^2 [1-CQ- = 0 

Xj2 - 2Xj^ - X = 0 

X = -x^z 

Substituting the resulting X into the simplified form of Eq. 

3-15 yields: 

Xl^ - 2X^2 I jTj - 2X^2 Cq - (-X^Z) = 0 
j=l 

2X^2 - 2X^2 I jT. - 2X^2 Cq = 0 
j=l 

2X^2 [1 - % jTj - CQ] = 0 
j=l 

1 - I jTj - Cg = 0 
j = l 

This equation is the final form for Eq. 3-15 which is identical 
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to Eq. 3-2. Then n+1 equations have been reduced to one 

equation. Therefore, Eqs. 3-15 and 3-2 are solved with A = 

n 

and Tj, T2, ... , may be any positive value satisfying % iT^ 
i=l 

= 1 - Cq. 

Case B; Only two payoff values exist, i.e., (X^-Xj)(Xj^-Xj.) = 0 

for all i, where t is the smallest i value such that X^ X^. For 

i = 1, 2, 3, ..., t-1, substituting = iX^ and = iX^^ into each 

of the first t-1 equations in Eq. 3-15 gives: 

- n 

iX^Z - 2(iXi) I TjYj - 2Cj(iXp - iA = 0 (i = 1, 2, .., t-1) 

n 

Xj_^ - 2Xj I TjYj - 2CiXi - X = 0 (Eq. 3-16) 

Therefore, the first t-1 equations have been reduced to one equation, 

i.e., Eq. 3-16. Further, subtracting Eq. 3-16 times i from Eq. 3-15 

for i = t, t+1, ... , n gives: 

n n 

Z^-2Y^ I TjYj-2C^Yj^-iX-iXj2+2(iXi) % TjYj+2C^(iXi)+iX = 0 
j=l j=l 

n 

(Zi-iXi?) - 2(Yi-lXi) % TjYj - 2C^(Y^-iXi) = 0 

n 

2(Y^-iXj)[ I TjYj + C^] = (Zi-iX^Z) (i = t, t+1, ..., n) 
j = l 

(Eq. 3-17) 

Now, the n+1 equations in Eqs. 3-15 and 3-2 have been reduced to a 

system of n-t+3 equations: 

n 
X^2 - 2X^ I T.Y. - 2C^X^ - A = 0 (Eq. 3-16) 

j=l 
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2(Yj_-iXi)[ I TjYj + Cj] = (Z^-iXj^) (i = t, t+1, ..., n) 

^ (Eq. 3-17) 

n 

I ITi = 1 - Cg (Eq. 3-2) 
1=1 

Necessity; If Eqs. 3-16, 3-17, and 3-2 are solvable, then 

Y^-lXi^O for i=t, t+1, n. Since for any i=t, t+1, n, 

if Y£-iXj=0, not only Yj|^=iXp but also Z^ziX^^ from Eq. 3-17. 

That is, 

i i 

Xi = [ I X.]/i (since = % X, ) 
j=l ^ j=l 

i i 
X,^ = [ I Xj2]/i (since = % X^ ) 

j=l j = l 

Hence, 

{[ I X,]/i}2 = [ I X 2]/i 
j=l j=l 

This implies that X^ = X^ for all j=l, 2, ..., i, which 

contradicts the definition that X,. f X^. Therefore, Y^-iX^ f 0 

for any i=t, t+1, ...» n. As a result, Eq. 3-17 can be written 

as : 

n 
I T.Y. + Ci = (Z^-iX^Z) / 2(Y^-iXp (i = t, t+1, ..., n) 

j=l 

(Eq. 3-18) 

Considering the case i = t, t is such that Xj = X^ for j=l, 2, 

..., t-1, and Xj. ^ X^. Then, 

t t-1 t-1 

Y. = % X, . I X, + X. = % X. + X^ = (t-l)Xi + X^ 
j = l j = l j = l 
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Z(. = I Xj2 = I X 2 + 2^2 _ 2 Xj2 + x^2 = (t-DX^^ + x^2 
j=l j=l j=l 

Substituting Yj. and into Eq. 3-18 and setting i=t, 

n 

I TjYj + Ci = (Zt-tX^Z) / 2(Yt-tXi) 

= [(t-l)Xi2+x^2_tx^2j / 2[(t-l)Xi+Xt-tXi] 

= - X^Z] / 2[Xt - Xj] 

= [X^ + Xil/2 

n 
[ I TjYj + Ci] is a constant that can be applied to any equation 
j=l ^ ^ 

in Eq. 3-18. 

[X^+X^]/2 = (Z^-iXj^) / 2(Y^-iXp (i = t, t+1, ..., n) 

(Z^-iX^Z) = (Yj^-ix^xx^+xp (i = t, t+1, ..., n) 

Subtracting the equation for i-1 from each equation for i gives; 

(Zi-iXi2)-[Zi_i-(i-l)Xi2]=(Xt+Xi){(Yi-iXi)-[Yi_i-(i-l)Xi]} 

( 1  =  t + 1 ,  . n )  

Z^-Z^-i-Xi^ = (Xc+Xi){Yi-Yi_i-Xi} (i = t+1, ..., n) 

i i-1 o o i i-1 
I X.2 - I X/ - X/ = (Xc+X,){ I X, - % X, - Xj} 

j=l ^ j = l ^ j = l j = l 

- Xj^ = (Xj.+Xi){X^ - Xj} (i = t+1, n) 

(X^ + Xi)(Xi - Xj) = (X^ + Xi)(Xi - Xj) (i = t+1, ..., n) 

There are two cases that satisfy this equation, i.e., 

i. = Xj 

ii. Xi f X^, then Xj. + Xj =• X^ + X^, Xj_ = X^ 

Therefore, if Eqs. 3-16, 3-17, and 3-2 (equivalent to Eqs. 3-15 
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and 3-2) are solvable, = X^ for 1=1, 2, t-1, and X^ = 

Xj, or X^ = Xj. for i = t+1, .., n. This completes the proof of 

necessity. 

Sufficiency; Suppose (Xj^ - Xj)(X^ - X^) = 0 for i = 1, 2, 

n. That is, either Xj^ = X^ or X^ = Xj. for 1 = 1, 2, n. Let 

aj^ be defined as the number of occurrences that Xj = X^ for j = 

1, 2, i. Then and could be rewritten as: 

i 
y, = i x, = i x. + % xj = ai xi + (i-ai) x^ 

j=l Xj=Xi Xj=Xt 

z, = i xjz = I x.2 + % x,2 = x^^ + (i_a^) 

j = l Xj-Xi ^ Xj=Xc 

Substituting the expressions for Y^ and into Eq. 3-17, 

n 
2(Y^-iXi)[ I TjYj + C^] = (Zi-iX^Z) (i = t, t+1 n) 

j=l 

2[aixi+(i-ai)xt-ixi][ I TjYj+Ci] = [a^xi2+(i-aj^)x^2_ix^2j 
j-i 

(i = t, t+1, ..., n) 

n 0 9 
2[(i-ai)xt-(i-ai)xi][ I T^Y^+C^] = [(i-ai)xt^-(i-ai)xi^] 

(i = t, t+1 n) 

2( i -a j^) (Xj . -Xi ) [  I  TjYj+Ci ]  = ( i -a^)(Xj .2-X^2)  

(i = t, t+1, ..., n) 

n 

2(i-ai)(Xt-Xi)[ I TjYj+Ci] = (i-a^)(X^+X^(X^-X^) 

(i = t, t+1, ..., n) 

Since i-a^ / 0 and Xj. j' X^, 
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n 
I Tl?! + Cl = (Xt+Xj)/2 (Eq. 3-19) 

j=l 

Now the n+1 equations in Eqs. 3-15 and 3-2 have been reduced to 

three equations ; 

n 
- ZXj I - ZC^Xj - X = 0 (Eq. 3-16) 

i=l 

n 
I + Ci = (Xt+Xi)/2 (Eq. 3-19) 

i^l 

n 
I iT^ = 1 - Cq (Eq. 3-2) 

i=l 

Substituting Eq. 3-19 into Eq. 3-16 yields: 

n 
X^^ - 2Xi [I TjYj + C^] - X = 0 

Xj^ - 2Xi [(Xt+Xi)/2] - X = 0 

Xi^ - X^Xt - x^z - X = 0 

X = -XjXj. 

Therefore, the three equations (Eqs. 3-16, 3-19, and 3-2) are 

always solvable. This completes the proof of Theorem I. 

3. Locations of relative maximums for 1 and 2 payoff values 

Theorem I proved that if there are at most two distinct payoff values 

for n states of nature, it is necessary and sufficient for a relative 

maximum variance to exist. In other words, a relative maximum does not 

exist if there are more than two distinct payoff values. Therefore, for 

the case that there are more than two distinct payoff values, the global 
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maximum variance must occur at the corner boundary points. 

In the case of only one payoff value, any set of T values, (Tj, Tg, 
n 

... , T^), satisfying ^ ITj^ = 1 - CQ  and >_ 0 is one of the multiple 
1=1 

solutions that result in the relative maximum variances. However, since 

there is only one payoff value, the variance is always equal to zero. 

In the case of two distinct payoff values, the relative maximum 

variance can be located by solving Eqs. 3-19 and 3-2. By subtracting 

times Eq. 3-2 from Eq. 3-19, Eq. 3-19 becomes: 

n n 

i vi + ci - i iti = (xt+xi)/2 - xid-cg) 
1=1 1=1 

Substituting = a^X^ + (l-aj^)Xj., 

n n 

I [aixi+(l-ai)xt]ti - I ix^t^^ = (xt+xj)/2 - x^ + x^cq -
1=1 1=1 

n 
I {[a^xi+(l-a^)xt]-ixi} = (xt+xi-2x^)/2 + x^cg -
1=1 

n 

I {(l-ai)xt-(i-ai)xi} = (xc-xi)/2 + x^cq -
1=1 

n 

I {(i-ai)(xt-xi)} = (xt-xi)/2 + xjcq -
1= 1  

Let C = % and C" = % 

Xi=Xi Xi=X, 

n 
Then, Cq = I = C' + C" 

1=1 

n 

ci = I mi xi = c'xi + c"x^ 
1=1 
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cg = I = c'xjl^ + c"x(.2 

Substituting the expression for Cg and yields: 

n 

I  (i-ai)(xt-xi)ti = (xt-xi)/2 + xi(c'+c") - C ' X y  - c'x^ 
1=1 

n 
I (l-ai)(xt-xi)ti = (xt-xi)/2 - (x^-xpc" 

1=1 

n 
I (l-ai)Ti = 1/2 - C" (since X^ ̂  X^) 

1=1 

n 
J] (i-aj^)Tj^ = 1/2 - C" (since a^ = 1 for i = 1, 2, t-1) 

i=t 

Eq. 3-19 is replaced by; 

n 
I (l-a^)T^ = 1/2 - C" (Eq. 3-20) 
i=t 

By subtracting Eq. 3-20 from Eq. 3-2, Eq. 3-2 becomes: 

n 

I iTi -
1=1 

n 

I (i-ai 
l=t 

)Tj_ = 1 - Cq - 1/2 + C" 

t-1 

I iTi + 
1=1 

n 

I iTi -
l=t 

n 

I iTi 
i=t 

n 
+ 1 a^Ti = 1 - C - C" - 1/2 + C" 

i=t 

t-1 

I iTi + 
1=1 

n 

1 *1^1 
i=t 

= 1/2 - C 

Since a^ = 1 for 1=1 » 2, ». ., t-1, Eq. 3-2 is replaced by: 

= 1/2 - C ' (Eq. 

Eq. 3-3 remains as follows: 
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Ti 0 (for i = 1, 2, n) (Eq. 3-3) 

If there are two distinct payoff values for n states of nature, any 

solution to Eqs. 3-20 and 3-21 results in a relative maximum. Since there 

are multiple solutions for Eqs. 3-20 and 3-21, multiple relative maximums 

can be obtained from Eqs. 3-20 and 3-21. However, with the constraints of 

Eq. 3-3, the multiple relative maximums may not be located inside the 

feasible region. 

It is important to be able to identify the conditions for which at 

least one relative maximum exists inside the feasible region. Since 2 

0, > 0, and (i-a^) 2 0 for i = 1, 2, ..., n, the left hand side of both 

Eqs. 3-20 and 3-21 are greater than or equal to zero. The corresponding 

right hand side of these two equations must also be greater than or equal 

to zero. Therefore, 1/2 - C" ̂  0 and 1/2 - C ^ 0 are necessary to have 

at least one relative maximum inside the feasible region. 

Despite the fact that the necessary conditions, 1/2 - C" 0 and 1/2 

- C" 0, are met, it is still possible that none of the multiple relative 

maximums exists inside the feasible region. In other words, the necessary 

conditions indicate that there is no relative maximum inside the feasible 

region if they are not met. But the fulfillment of the necessary 

conditions does not guarantee there is at least one relative maximum 

inside the feasible region. 

A basic solution to Eqs. 3-20 and 3-21 has at most two unknowns which 

are not equal to zero. There are (n)(n-l)/2 basic solutions to Eqs. 3-20 

and 3-21. Any linear combinations of these basic solutions is also a 

solution to Eqs. 3-20 and 3-21. Therefore, unless all the basic solutions 
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are outside the feasible region, at least one relative maximum occurs 

inside the feasible region. 

4. Common value of multiple relative maximums for two payoff values 

In Section F.2, it was proved that no relative maximum exists if 

there are more than two distinct payoff values for n (n 3) states of 

nature. If there is only one payoff value, the variance is always zero. 

If there are only two distinct payoff values for n (n > 3) states of 

nature, the multiple relative maximums can be located by solving Eqs. 

3-20, 3-21, and 3-3. 

n 
I (i-ai)Ti = 1/2 - C" (Eq. 3-20) 

i=t 

n 
I a^Ti = 1/2 - C (Eq. 3-21) 

i=l 

Ti 0 (for i = 1, 2, ..., n) (Eq. 3-3) 

Although multiple relative maximums exist, they result in a common 

variance value. Therefore, any solution from Eqs. 3-20, 3-21, and 3-3 is 

sufficient to find the common value of the multiple relative maximums. 

Since the system of equations has two equations and n (n 3) 

unknowns, a basic solution to Eqs. 3-20 and 3-21 has at most two unknowns 

which are not equal to zero. It is then reasonable to assume that only Tj^ 

and Tj. are not equal to zero while setting all other unknowns equal to 

zero. With the above assumption, Eqs. 3-20, 3-21 and 3-3 can be rewritten 

as follows, 

(t-at)Tt = 1/2 - C" 
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ajtj + = 1/2 - c 

ti > 0. tt > 0 

Since the payoff values for the states of nature from one to t-1 are all 

equal to according to the definition of t, then = t-1. Therefore, 

The expressions for T^ and Tj. in Eqs. 3-22 and 3-23 represent one of the 

basic solutions to Eqs. 3-20 and 3-21. This solution is feasible if both 

T^ and T^ are positive. The solution is infeasible, (in other words, it 

is outside the feasible region) if either T^ or T^ is negative. Whether 

or not the resulting values of T^ and T^ are feasible, the common variance 

value of the multiple relative maximums can be obtained from these values 

of T^ and T^. 

From Eq. 3-1, 

Tj. = 1/2 - C" 

= 1/2 - C - (t-l)Tj. 

= 1/2 - C - (t-l)/2 + (t-l)C" 

(Eq. 3-22) 

= 1 - C + (t-l)C" - t/2 (Eq. 3-23) 

n n n 
VAR = Cg + % T^Zi - - [ % TiYi]2 - 2C\[ I T^Y^] 

i=l i=l i=l 

= cg + % t^zi - [ci + ( % t^yi)]: 
i=l i=l 

VAR = Cg + T^X^Z + Tj.[(t-l)X^2+Xj.2] _ {c^ + T^X^ + T^[(t-l)X^+Xj.] }2 
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= c'xj2 + c"x(.^ + + t^[(t-l)xi^+x^^] 

- {c'xj + c'xj. + tjxj + tt[(t-l)xi+x(.]}2 

Substitute the expression of Tj and into the above equation, 

= 1/2 - C" (Eq. 3-22) 

Tj = 1 - C + (t-l)C" - t/2 (Eq. 3-23) 

Then, 

VAR = C-X^Z + C"X^Z + [I-C'+(t-l)C"-t/2]Xj2 + (1/2-C")[(t-DX^^+X^^] 

- {CXj + C"Xt + [l-C'+(t-l)C"-t/2]Xi + (l/2-C")[(t-l)XjL+X^] 

= C'X^Z + C'X^Z + XjZ - C'X^Z + (t-l)C"Xj2 - tX^Z/2 

+ (t-l)Xj2/2 + x^2/2 - C"(t-l)Xj2 - C"X(.Z 

- {C'Xj + C'X^ + Xi - C'Xj + (t-l)C"Xj - tX^/2 

+ (t-l)Xi/2 + Xj./2 - C"(t-l)Xj - C"X^ 

= X^2/2 + X ^ ^ / 2  - { X^/2 + X ^ / 2  

= xJ2/2 + x^2/2 _ x^2/4 - x^2/4 - xix^/2 

= (X^Z + X^Z _ 2XiXt) / 4 

= (X^ - Xi)2 / 4 (Eq. 3-24) 

If there are only two distinct payoff values, Eq. 3-24 is the common 

variance value of the multiple relative maximum. Notice that this 

relative maximum variance value becomes the global maximum variance only 

if at least one relative maximum exists inside the feasible region. 

5. Counter example 

Up to this point, the search for the extreme variances under strict 

ranking has closely followed the pattern of the search for the extreme 

variances under weak ranking. However, a counter example can be developed 
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to show the parallel cannot be taken further. Although the condition, 

that there are at most two distinct payoff values, is necessary and 

sufficient for the existence of relative maximums, it is no longer true 

that there will always be a corner boundary point of equal value. 

Counter-example ; Consider five possible states of nature and a 

strategy for which relative maximums exist inside the feasible region. 

The payoff values and the minimum differences between the states of nature 

are: 

Xl=10, X2=20, X3=20, X4=10, Xg=10 

k^a.lO, k2=.04, k2=.03, k^=.02, kg=.01 

Solution to the counter-example: By the definition of M^, the minimum 

requirements of probabilities are: 

mj=.20, m2=.10, m3=.06, «^=.03, mg=.01 

Since there are only two distinct payoffs, the coefficients C and C" are: 

C = ^ + M5 = .24 and C" = ^ = M2 + Mj = .16 

xi-xl xi=xt 

a. Relative maximums : Since the necessary conditions are met, 

the relative maximums can be located by using Eqs. 3-20 and 3-21. 

From Eq. 3-20, 

T 2  +  2 T 3  + 2 X 4 + 2 X 5 =  . 5  -  . 1 6  

From Eq. 3-21, 

+ T2 + T] + 2X4 + 3X5 = .5 - .24 

Solving these two equations simultaneously, one of the basic 

solutions for Eqs. 3-20 and 3-21 Is: 

x^ = .09, x3 = .17, xg = t4 = xg = 0 
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Since this is a feasible solution, the relative maximum is a global 

maximum. The variance value of the global maximum can be calculated 

by Eq. 3-24. 

VAR = (X^-Xp^ / 4 = (20-10)2 j 4 = 25.00 

b. Variances at corner boundary points; Corner solutions occur 

when = (l-CQ)/i (i= 1, 2, 3, 4, or 5) with all other Tj (jî^i) set 

at zero. The values of the variance at the corner solutions can then 

be evaluated and expressed in the following table. 

Corner Resulting Probabilities Variance 

Solution 
l l  

p4 p5__ Value 

1 .80 .10 .06 .03 .01 13.44 

2 .50 .40 .06 .03 .01 24.84 

3 .40 .30 .26 .03 .01 24.64 

4 .35 .25 .21 .18 .01 24.84 

5 .32 .22 .18 .15 .13 24.00 

The resulting variance value from the global maximum lies outside the 

range 13.44 to 24.84 defined by the corner boundary points. The global 

maximal variance for this example is 25.00, and the global minimal 

variance 13.44. 

6. Summary of solutions for n states of nature 

Thus it may be concluded that the assessment of the extreme values of 

the variance under strict ranking must proceed in the following way. 

a. Global minimum At least one global minimum occurs at the 

corner boundary points despite the number of distinct payoff 

values. 

b. Global maximum 

i. If there are more than two distinct payoff values, the 
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global maximum must occur at corner boundary points. 

If there are only two distinct payoff values, it is possible 

that relative maximum exist inside the feasible region. 

Check the necessary conditions: 1) l/2-C"^0, and 2) 1/2 

- C > 0. If the necessary conditions are not met, the 

global maximum will still occur at corner boundary points. 

If the necessary conditions are met, Eqs. 3-20, 3-21, and 

3-3 are served to locate the relative maximums. Check all 

basic solutions to Eqs. 3-20 and 3-21. 

Case 1: If at least one basic solution of Eqs. 3-20 

and 3-21 is feasible, the global maximal variance can 

be calculated by Eq. 3-24. 

Case 2: If all the basic solutions to Eqs. 3-20 and 

3-22 are not feasible, (for example, the value of Xg is 

changed to 10 in the above counter example), the global 

maximum must occur at one of the corner boundary 

points. 
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IV, EXTREME INDEXES OF UTILITY UNDER STRICT RANKING 

It is desirable to evaluate both the measure of central tendency 

(expected value) and the measure of dispersion (variance or standard 

variation) of a strategy. The algorithms of searching for 1) the extreme 

expected values under both weak and strict ranking, and 2) the extreme 

values of the variance under weak ranking were developed by Cannon and 

Kmietowicz [1974], Agunwamba [1980], and Kmietowicz and Pearman [1981]. 

The proof for determining the extreme values of the variance for strict 

ranking was developed in the previous chapter. 

However, Kmietowicz and Pearman pointed out that 

"...it is possible that the sets of probabilities of states of nature 
underlying the two independent calculations (i.e., expected values 
and variance) need not be the same. Although it is quite plausible 
that the decision maker might approach strategy evaluation on the 
basis of independent calculations, it does suggest that he be 
required to maintain two mutually inconsistent views of the 
probability distribution of states of nature," 

To avoid this difficulty, Kmietowicz and Pearman investigated 

incorporating the expected value and variance into a single index, index 

of utility, under weak ranking. They assumed that the expected value and 

the variance can be traded off linearly by a coefficient of risk aversion, 

b. Then the index of utility for a strategy can be written as: 

I = EXP + b * VAR 

where I = index of utility considering both the expected value and 

variance of a strategy 
EXP = expected value of payoff values under a set of 

probabilities 
b = coefficient of risk aversion which is a trade-off rate 

between the expected value and the variance 
VAR = variance of payoff values under a set of probabilities 

Kmietowicz and Pearman then developed an algorithm to search for the 
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set of probabilities which gives the extreme indexes of utility under the 

conditions of weak ranking. They concluded that the assessment of the 

extreme indexes of utility which is a linear combination of expected value 

and variance must proceed in the following way: 

1, If there are more than two distinct payoff values, the extreme 

indexes must occur at the corner boundary points. 

2. If there are only two distinct payoff values, it is possible that 

the extreme indexes occur inside the feasible region. The 

extreme indexes can be identified by using equation 5.7 and 5.8 

[Kmietowicz and Pearman 1981]. However, depending on the 

relationship between the coefficient of risk aversion and the two 

distinct payoff values, the identified extreme indexes need not 

always be located inside the feasible region. In the case that 

no extreme index can be identified inside the feasible region, 

the extreme Indexes will still occur at the corner boundary 

points. 

Another objective of this research is to search for a set of 

probability values under strict ranking that results in the extreme values 

(maximum and minimum values) of an index of utility. The index of utility 

is a linear combination of the expected value (mean) and the variance with 

a trade-off coefficient between the mean and the variance. The trade-off 

coefficient is referred to as the coefficient of risk aversion. A 

negative coefficient of risk aversion denotes an aversion to risk because 

a negative b value indicates an attempt to avoid risk by imposing a 

heavier penalty on a greater variance. As the value of b becomes 
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increasingly negative, the more aversive to risk (conservative) the 

decision maker becomes. A positive coefficient of risk aversion denotes a 

preference to risk. 

The resulting index of utility with a negative coefficient of risk 

aversion is a reasonable figure of merit for project evaluation. The 

index considers not only the expected returns from the project, but also 

is efficient in avoiding projects with great variation In return. 

Section A defines the objective function and its constraints in 

searching for the extreme indexes of utility. 

Section B examines the objective function and its constraints and 

recognizes it as a quadratic function subject to two linear constraints. 

The two linear constraints define the feasible region (combination of all 

feasible solutions) where the extreme indexes (maximum and minimum 

indexes) can lie. 

The quadratic term, because of the inherent negative feature of the 

coefficient of risk aversion, b, is positive. The positive quadratic term 

in the objective function dictates that the objective function is convex. 

Therefore, any relative extreme point must be a relative minimum. 

A relative maximum does not exist. As a result, the global maximum index 

of utility always occurs at the corner boundary points. 

Section C describes the general approach that is used to search for 

the global minimum index of utility. Using a Lagrange multiplier and 

partial differentiation, a system of linear equations is formed. Any 

solution to the system of linear equations results in the relative minimum 

referred to in Section B. However, the system of equations may have 1) no 
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solution indicating that no relative minimum exists, 2) one single 

solution (one relative minimum), or 3) multiple solutions (multiple 

relative minimums) of equal value. 

V y 
No solution One solution Multiple solutions 

If a relative minimum formed by the convex function exists within the 

feasible region, it is also a global minimum. If no relative minimum 

exists, or the relative minimum(s) of the convex function lies outside of 

the feasible region, then the global minimum occurs at one of the corner 

boundary points of the feasible region. 

feasible 
region 

Relative minimum occurring inside 
of the feasible region 
(relative minimum = global minimum) 

I*" feasible-»-! 

Relative minimum occurring outside 
of the feasible region 
(relative minimum ̂  global minimum) 

In Section D, the objective function for the index of utility takes 

into consideration two possible states of nature. By applying the solving 

algorithm of the Lagrange multiplier and partial differentiation, it is 
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possible to solve for the two T values. Here it is possible to obtain 

positive as well as negative T values. If both T values are positive, the 

resulting relative minimum is located inside of the feasible region. This 

relative minimum is a global minimum. If either one of the two T value is 

negative, the resulting relative minimum lies outside of the feasible 

region. Hence, when a negative T value occurs, the global minimum must 

occur at one of the corner boundary points of the feasible region. 

In Section D, a numerical example demonstrates the procedure for 

locating the relative minimum. The positive T values obtained indicate 

that the resulting relative minimum index lies inside the feasible region. 

Therefore, the relative minimum is the global minimum index. And the 

value of the global minimum index lies outside the Index range as defined 

by the corner boundary points. 

In Section E, the objective function for the index of utility takes 

into consideration more than two states of nature. Using the same solving 

algorithm of the Lagrange multiplier and partial differentiation, a system 

of n+1 equations is formed. The determinant of the coefficient matrix for 

the system of equations is found to be zero. Therefore, the system of 

equations has either no solution if the equations are contradictory to one 

another (Insolvable conditions), or multiple solutions if the equations 

are consistent (solvable condition). 

Solvable conditions for n states of nature are then dictated by 

Theorem II. For the system of equations to be solvable. Theorem II proves 

that there can be at most two distinct payoff values. Therefore, the 

global minimum must occur at the corner boundary points if there are more 
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than two distinct payoff values. If there is only one payoff value, the 

index of utility is equal to the payoff value because the variance is 

always equal to zero. 

If there are two distinct payoff values, multiple relative minimums 

of equal value can exist. The necessary conditions for the existence of 

at least one relative minimum inside the feasible region are developed. 

If the necessary conditions are not met, the global minimum index of 

utility must occur at one of the corner boundary points. 

If the necessary conditions are met, it is possible that a relative 

minimum(s) exists inside the feasible region. The multiple relative 

minimums can be located by a pair of linear equations. Any solution to 

the pair of linear equations results in a relative minimum. The multiple 

relative minimums have a common value of the variance which can be 

calculated directly. However, only the relative miniraum(s) inside the 

feasible region defines the global minimum(s). In case that none of the 

multiple relative minimums is located inside the feasible region, the 

global minimum index of utility must occur at one of the corner boundary 

points. 

feasible 
region 

At least one of the multiple 
relative minimums of equal value 
exists inside of the feasible 
region. 

feasible 
region 

All multiple relative minimums of 
equal value exist outside of the 
feasible region. 
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A numerical example is provided to demonstrate the procedure for searching 

for the multiple relative minimum points. 

A. Objective Function and Constraints 

Using the same notation from Chapter III, the formula for calculating 

the expected value under strict ranking is; 

n 

EXP = I Pi * Xi 
1=1 

n 

= i (mi + di) * xi 
i=l 

n n 

= I  mi xi + I  di xi 
i=l i=l 

n 

= ci + i ti yi 
1=1 

And the expression for the variance is repeated as: 

n n n 

VAR = Cg + I ?! - Ci^ - [ I Ti Yi - ZC^ [ % Ti Yi ] 
1=1 1=1 1=1 

Since the constraints remain the same as in Chapter III, the objective 

function and the constraints used to search for the extreme indexes of 

utility under strict ranking can be written as: 

Maximizing or Minimizing 

I = EXP + b * VAR (Eq. 4-1) 

n n n n 

= Ci + I TiYi + b {Cg + I TiZi - C^Z - [ I TiYi]2 - ZC^t % TiY.]} 
1=1 1=1 1=1 1=1 
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Subject to 

n 
I i * = 1 - Cq (Eq. 4-2) 

1=1 

2 0 (for 1=1, 2, 3, n) (Eq. 4-3) 

Notice that all of the k^'s are set equal to zero under weak ranking. 

Hence, the minimum requirement of probabilities, for all states of 

nature are zero. As a result, the constants (CQ, , and C2) which are 

composed of are equal to zero. Therefore, Eq. 4-1 can be rewritten as 

the following equation for weak ranking, 

I = I  Ti Yi + b { I Ti Zi - i l  YJ2 } 
i=l i=l i=l 

The above equation is the same as the objective function under weak 

ranking derived by Kmietowicz and Pearman [1981]. Therefore, searching 

for the extreme indexes of utility under weak ranking is a special case of 

the problem under strict ranking where all of the k^'s (i = 1, 2, n) 

are set equal to zero. 

B. Nature of Objective Function and Constraints 

Since the objective function is a quadratic function and the 

constraints are linear, the problem to be solved is in the form of 

quadratic programming. Since the constraints are the same as the case of 

searching for the extreme variances, the resulting feasible region also 

remains the same. The feasible region is a closed convex set formed by 

the intersection of a hyperplane and n closed positive half-spaces. 
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The objective function is formed by one quadratic term, -b[ % T^Y^]^, 

together with linear terms and constants. The coefficient of risk 

aversion, b, is always less than or equal to zero in any sound economic 

decision. (The non-positivity feature of the coefficient of risk aversion 

will be discussed in detail in Chapter V.) Therefore, the quadratic terra 

is always greater than or equal to zero, and is defined as positive 

semidefinite. Any positive semidefinite quadratic form is a convex 

function over all of [Theorem 3.4, Simmons 1975]. In addition, the 

linear terms are both convex and concave over all of E"^ [Theorem 3.1, 

Simmons 1975]. The sum of two or more convex functions is convex [Theorem 

3.3, Simmons 1975]. Therefore, the objective function, which is the sum 

of one convex quadratic terra and several linear terras, is a convex 

function over all of E^. As a result, a relative extreme point must be a 

relative minimum if such a relative extreme point exists. 

C. Approach to Search for Extreme Indexes of Utility 

Since the objective function of the index of utility is convex over 

all of e", the global minimum of the index of utility over the feasible 

region may either be determined by the relative miniraum(s) if it exists 

inside the feasible region, or be located at corner boundary points of the 

feasible region. The global maximura of the index of utility over the 

feasible region must occur at the corner boundary points because no 

relative maximum exists. 

To locate the relative minimum for the constrained quadratic 
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programming problem, the method of Lagrange multipliers can be used. By 

introducing a Lagrange multiplier, the objective function is combined with 

the constraint (not including the non-negativity constraints) into a 

Lagrange function. 

Setting the first partial derivatives of the Lagrange function equal 

to zero, a system of n+1 linear equations of n variables (T^'s) and the 

Lagrange multiplier is generated. A solution that satisfies the system of 

n+1 equations results in a relative minimum of the original quadratic 

programming problem. Since there are n+1 equations for n+1 unknowns (T^'s 

and the Lagrange multiplier), only one relative minimum exists in if 

the n+1 linear equations are independent of one another. However, if some 

of the n+1 equations are dependent on one another (in which case the 

determinant of the coefficient matrix will be equal to zero), either no 

relative minimum or multiple relative minimums exist in E^. Since the 

Lagrange function ignores the non-negativity constraints, the relative 

minimura(s) may be located outside the feasible region. Therefore, the 

search for the global minimum of the index of utility comprises the 

following three situations: 

a) If at least one relative minimum exists within the feasible 

region, the constrained relative minimum(s) must be a global rainiraura(s) 

over the feasible region [Theorem 3.7, Simmons 1975]. 

b) If a relative minimum(s) exists, but the relative minimura(s) is 

located outside the feasible region, then the global minimums must occur 

at the corner boundary points. 

c) If there is no relative minimum, then the global minimum must 



www.manaraa.com

70 

occur at the corner boundary points. 

D. Extreme Indexes of Utility for Two States of Nature 

The objective function and its constraints for a problem with two 

possible states of nature (two dimensional problem) are: 

Maximizing or minimizing 

I = Ci+TiYi+TgYg + b {Cg+TiZi+TgZg-CiZ-lTiYi+TgYgjZ-ZCiCTiYi+TgYg)} 

Subject to 

ti + 2t2 = 1 - co 

ti > 0, t2 > 0 

Since the objective function is convex, the global maximum must occur at 

the corner boundary points. In order to determine the global minimum, it 

is necessary to ascertain whether or not a relative minimum exists inside 

the feasible region. 

1. Lagrange function 

In the Lagrange multiplier method of searching for relative extreme 

points, it is not possible to include non-negativity constraints. Hence, 

non-negativity constraints are temporarily ignored. The usual procedure 

is to examine the solution in order to ascertain that the non-negativity 

constraints are satisfied. 

Temporarily ignoring the non-negativity constraints, a standard 

Lagrange function can be formed to search for the extreme point (maximum 

or minimum index). The Lagrange function is; 
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L = Ci+TiYi+TgYg + b {Cg+TiZi+TgZg-CiZ-ETiYi+TgYgjZ-ZCiCTiYi+TgYz)} 

+ 4" [l-cg-ti-ztg] 

= C^+Tj^Y^+TgYg + b {C2+TjZj+T2Z2-Ci^-Tj2Yj^-T2^Y2^-2TjT2YjY2 

-2cjtiyj-2cjt2y2} + 4il-co-ti-2t2] 

For a relative minimum to exist, it is necessary that the three 

simultaneous equations formed from the partial derivatives of the Lagrange 

function with respect to Tj^, T2, and ij» be solvable [Schmidt 1974]. 

= Yj + b {Zj - 2TjYi2 - 2T2Y^Y2 - 2CjYj} - = 0 (Eq. 4-4) 

= Yg + b {Z2 - 2T2Y2^ - 2TjYjY2 - ZC^Yg} - 2* = 0 (Eq. 4-5) 

8l 
— =1 - Cg — Tj — 2T2 - 0 (Eq. 4-6) 

2. Solution for relative minimum index of utility 

Multiplied by (Y2/Y1), Eq. 4-4 becomes; 

Y2 + b {Zj(Y2/Yp - 2T1Y1Y2 - 2T2Y2^ - 2C^Y2} - = 0 

Subtract the above equation from Eq. 4-5, 

b {Z2 - Zi(Y2/Yi)} - *(2 - Y2/Y1) = 0 

Multiplying by Y^, 

b {Z^Yi - ZjY2} - 4^2Yi - Yg) = 0 

Therefore, the value for i|» is obtained: 

= b (Z2Y1 - Z1Y2) / (2Yj - Yg) (Eq. 4-7) 

Substitute the expression for i|j (Eq. 4-7), and = 1 - Cg - 2T2 (Eq. 4-6) 

into Eq. 4-5, and solve for T2. 
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Yg + b {Z2-2T2Y22-2(1-Co-2T2)YiY2-2CjY2} - 2b(Z2Yj-ZiY2)/(2Yi-Y2) = 0 

Yg + b{Z2-2T2Y2^-2(l-Co)YjY2+4T2YiY2-2CjY2-2(Z2Yi-ZiY2)/(2Yj-Y2)} = 0 

t2b(2y2^-4yiy2) = y2 + b{z2-2(l-co)yiy2-2ciy2-2(z2yi-z^y2)/(2yi-y2)} 

Substitute Y^ = Xj, Y2 = X^ + X2, = X^^, and Z2 = X^^ + X2^ into the 

equation, 

T2b[2(Xi+X2)2-4Xi(Xi+X2)] = (X^+Xg) + b {(Xi2+X2^)-2(l-Co)Xi(Xi+X2) 

-2cj(xj+x2) 

-2[(xj2+x22)x^-xj2(xj+x2)]/[2xi-(xi+x2)]} 

T2b[2X^^+2X2^+4X^X2-4X^^-4X^X2] = X1+X2 + b {Xj2+X2^-2Xj^-2XjX2 

+2cqxi(xi+x2)-2c^(xj+x2) 

-2[x^^+xix2^-xi^-xj2x2]/[2xi-xj-x2]} 

T2b[2X2^-2Xj2] = X^+Xg + b {X2^-Xj2-2XjX2+2CoXj(Xj+X2)-2C^(Xj+X2) 

-2[xix^z-xi2x2]/[x1-x2]} 

2t2b[x22-xj2] = x1+x2 + b{x22-xj2-2x^x2+2coxi(xj+x2)-2c^(xj+x2)+2xix2} 

2t2b[x22-xj2] = x^+xg + b{(x22-xj2)+2cqxj(xi+x2)-2ci(xi+x2)} 

t2 = (xi+x2)/2b(x22-xi2) 

+ b{(x22-x^2)+2cqxi(xi+x2)-2c^(xi+x2)}/2b(x22-xj2) 

t2 = l/2b(x2-xi) + 1/2 + cgxi/ckg-xi) - ci/cxg-x;) 

Recall the definition for CQ  and Cp 

cq ^ ik^ + 21c2 

cj^ — mj^xj + m2x2 — (k^+k^^^x^ + k2x2 

Substituting Cq and Cp the expression for T2 can be further simplified. 

t2 = l/2b(x2-x^) + 1/2 + (kj+2k2)x^/(x2-xi) - [(ki+k2)xi+k2x2]/(x2-x^) 

= l/2b(x2-x^) + 1/2 + [k^xi+2k2xj-kjxpk2xpk2x2]/(x2-xp 

= l/2b(x2-xj) + 1/2 + [k2xpk2x2]/(x2-xp 
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= l/zbcxg-xi) + 1/2 - [k2(x2-xi)]/(x2-xi) 

= l/2b(X2-xp + 1/2 - k2 (Eq. 4-8) 

Since + 2T2 = 1 - CQ, 

ti = 1 - co - 2t2 

= 1 - kj - 2k2 - l/bcxg-xi) - 1 + 2k2 

= l/b(Xj-X2) - kj (Eq. 4-9) 

Note that a feasible solution for and T2 resulted in terms of b, Xp 

X2, k^, and k2. As long as the resulting values of and T2 are 

positive, a feasible solution can be obtained. However, a negative value 

of or T2 results in a solution that lies outside of the feasible 

region. 

3. Counter example 

Up to this point, the search for the relative minimum index of 

utility for two states of nature under strict ranking has closely followed 

the pattern of the relative maximum variances under strict ranking. 

However, a counter example can be developed to show that the relative 

minimum index of utility need not occur at the corner boundary points. 

Counter-example ; Consider a strategy under two possible states of 

nature. The payoff values and the minimum differences between the 

probabilities of the states of nature are: 

xj=10, x2=20 

k^=.10, k2=.05 

And the coefficient of risk aversion is -0.25. 
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Solution to the counter-example; By the definition of , the minimum 

requirements of probabilities are; 

Mj = .15, Mg = .05, Cg = «1 + Mg = .20 

Relative minimum index of utility; The relative minimum index of 

utility can be located by using Eqs. 4-8 and 4-9. 

From Eq. 4-9, 

Tj = l/bCXi-Xg) - ki = l/(-.25)(10-20) - .10 = .30 

From Eq. 4-8, 

Tg = l/2b(X2-Xi) + 1/2 - kg = l/2(-.25)(20-10) + .5 - .05 = .25 

Since this is a feasible solution as indicated by the positive T 

values, the resulting relative minimum is a global minimum index of 

utility. Then, 

Dj^ = .55, Dg = .25 

= .70, Pg = .30 

The resulting global minimum index of utility is 7.75 with a mean of 

13.00 and variance of 21.00. 

Indexes of utility at corner boundary points: The two corner 

boundary points are T^ = (l-CQ)/i (i= 1 or 2) with the other Tj (jî'i) 

set at zero. The values of the mean, variance, and index of utility 

at the corner solutions can be evaluated and expressed in the 

following table. 

Corner 
boundary Probabilities Mean Variance Index of 
point P^ ?2 Value Value Utility 

1 .95 .05 10.50 4.75 9.3125 
2 .55 .45 14.50 24.75 8.3125 

The global minimum index of utility lies outside the range of 8.3125 to 
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9.3125 as defined by the corner boundary points. Therefore, the global 

minimum index for this example is 7.75; the global maximum index is 

9.3125. 

Thus, it may be concluded that the assessment of the extreme indexes 

of utility for two states of nature under strict ranking must proceed in 

the following way: 

1. If there is only one payoff value, i.e., Xj = X2, the decision 

problem becomes trivial. 

2. If there are two distinct payoff values, the global maximum index 

of utility always occurs at the corner boundary points. Eqs. 4-8 

and 4-9 are served to locate the relative minimum index of 

utility. Depending upon the values assigned to b, Xp X2, and 

kp it need not always be the case that the relative minimum 

index is located inside the feasible region. If a relative 

minimum exists inside the feasible region, it is the global 

minimum index of utility. If the relative minimum index is 

located outside the feasible region (for example, the value of T^ 

or T2 is negative), the global minimum index of utility will be 

found at the corner boundary points of the feasible region. 

E. Extreme Indexes of Utility for N States of Nature 

The objective function and constraints in the search for the extreme 

indexes of utility for n states of nature (where n 2 3) under strict 

ranking are: 
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Maximizing or minimizing 

I = EXP + b * VAR (Eq. 4-1) 

Subject to 

n 

i 1 * ti = 1 - co (Eq. 4-2) 
1=1 

2 0 (for 1=1,2, 3, ..., n) (Eq. 4-3) 

Since the objective function Is convex, no relative maximum exists. 

The global maximum must occur at the corner boundary points. In order to 

determine the global minimum, the objective Is to ascertain If a relative 

minimum exists Inside the feasible region. A Lagrange function is used to 

search for the relative mlnlmum(s). 

1. Lagrange function 

The appropriate Lagrange function for n states of nature Is; 

For a relative minimum to exist, it is necessary that the n+1 simultaneous 

linear equations formed from the partial derivatives of the Lagrange 

function with respect to the T^ values (1 = 1, 2, 3, ... , n) and to "I», be 

solvable for T^ and "I* [Schmidt 1974]. That is, it must be possible to 

solve the following n+1 equations : 

L = Cj + I T^Yi + b {Cg + I T^Zi - - [ I TiYi]2 - 2Ci[ % T^Y^]} 
1=1 1=1 1=1 1=1 

n 
+ * [1 - cg - i 1 t^] 

1=1 
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3li ^ 
—- = Y. + b {Z.-2Y. I T.Y.-2C,Y.} - ii/» = 0 (i= 1, 2, n) 
3Ti j=l J J 

9L n 

" Ji ill = 1 - co 

(Eq. 4-10) 

(Eq. 4-2) 

Eqs. 4-10 and 4-2 can be written in the form of matrixes: 

aL 

iîî ^1 bZj^ 

3L 

BTg ^2 bZ2 

• 

= 

• 
+ 

• 
— 

dL 

K 
^n bzn 

aL 

a^j) 
0 1 

2byi< 2by^y2 .. zby^y^ 1 

2byiy2 2by2^ .. 2by2y^ 2 

2bYiYn ZibYgYn .. 2bYn^ n 

n 0 

2bcjy^ 

2bc^y2 

2bciyn 

Rearrange the matrix equation, 

2bYj2 2bYjY2 ... 2bYjYjj 1 tl Yj+bZj-2bCjYj 

2bYjY2 2bY2^ ... ZibYgYn 2 ^2 Y2+bZ2-2bCjY2 

. : 
2bYiY„ 2bÏ2Ï„ ... 2bYj n tn y„+bzn-2bciy„ 

1 2 ... n 0 * I-Cq 

Divide the first n rows by 2Yp 2Y2, and 2Yjj, respectively, 
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bYi bY2 ••• bYn l/2Yi Tl (l/2)+(bZi/2Yi)-bCi 

bYi bY2 ••• bYn 2/2Y2 ^2 = 
(l/2)+(bZ2/2Y2)-bCj 

bYi bY2 ••• 3/2Y„ Tn (l/2)+(bZn/2Yn)-bCi 

1 2 n 0 4» o
 

0
 

1 

« 

Subtract rows 2, 3, n by row 1, respectively. 

byj byg ... 

0 

1 

0 

2 

by„ l/2yi 

0 (2/2y2)-(1/2yj) 

0 (n/2Y„)-(l/2Yi) 

n 0 

(l/2)+(bzi/2yi)-bci 

(bz2/2y2)-(bzj/2yj) 

(bzn/2yn)-(bzi/2yi) 

1-C 0 

The determinant of the (n+1) by (n+1) coefficient matrix must be equal to 

zero [Cofactor method of calculating the determinant, Schmidt 1974]. The 

singular coefficient matrix implies that the system of n+1 equations has 

either no solution or infinite solutions. The system of equations has no 

solution when these equations are contradictory to one another (insolvable 

conditions). On the other hand, if these equations are consistent 

(solvable conditions), the system of equations has multiple solutions. If 

the system of equations is insolvable, it means that the relative minimum 

does not exist. If the system of equations is solvable, multiple relative 

minimums of equal value exist. 
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2. Solvable conditions for n states of nature 

It is found that the system of n+1 equations is solvable if and only 

if there are at most two distinct payoff values contained among n payoff 

values. This statement is proved as follows, 

THEOREM II; A necessary and sufficient condition for Eqs. 4-10 and 4-2 to 

be solvable is that there are at most two distinct payoff values. 

proof; 

Case A; Only one payoff value exists, i.e., = Xj for all i. 

Necessity: If Eqs. 4-10 and 4-2 are solvable, it is possible 

that Xj; = X^ for all i holds. 

Sufficiency; If Xj^ = Xj^ for all i (1=1, 2, ..., n), then, 

yi = ixi 

yj = jxi 

zi = 1x^2 

^1 ^1 cq 

Substituting Yj, Z^, and Cj^ into Eq. 4-10 gives: 

9 5 
tX^ + b {iXi^ - 2iXi % TjCjXj) - 2(XiCQ)(iXi)} - i* = 0 

iXj + b {iX^Z - 21X^2 J jTj - 2iX^2c^} _ i* = 0 

0 Xi + b {X^Z - 2X^2 Y jTj - 2Xi2Col - ̂  = 
j=l 

Subtracting 2bX22 times Eq. 4-2, 

n n 
x^ + b{xi2-2x^2 ^ jtj_2xi2co} - - 2bxi2[l-cq- i it^] = 0 

j=l 1=1 
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+ b {X^Z - 2X^2} - = 0 

i|) = xj - bx^z 

Substituting the resulting iJi into the simplified Eq. 4-10 

yields: 

Xj + b {X^Z - 2XJ2 - ZXJ^CQ} - [X^ - bX^^] = Q 

b {2X^2 _ 2Xi2^%^jTj - 2X1%} = 0 

n 
2bX,2 [1 - I jT. - Cq] = 0 

j=l 

n 

1 - i jtj - cq = 0 
j=l 

This equation is the final form for Eq. 4-10 which is identical 

to Eq. 4-2. The n+1 equations have been reduced to one 

equation. Therefore, Eqs. 4-10 and 4-2 are solved with = 

X^-bX^Z and T^, T2, •••, T^ may be any positive value satisfying 

I i?! = 1 - Cq. 
i=l 

Case B; Only two payoff values exist, i.e., (X£-X2^)(Xj^-Xj.) = 0 

for all i, where t is the smallest i value such that X^ ^ X^. For 

i = 1, 2, 3, ..., t-1, substituting = iXj^ and = iX^^ into each 

of the first t-1 equations in Eq. 4-10 gives: 

n 
iXj + b {iXj2-2(iXj) I TjYj-2Ci(lXi)} - H|; = 0 (1=1, 2,.., t-1) 

j=l 

n 

Xj + b {X^Z - 2X1 I TjYj - 2C^Xj} - (|; = 0 (Eq. 4-11) 
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Therefore, the first t-1 equations have been reduced to one equation, 

i.e., Eq. 4-11. Further, subtracting Eq. 4-11 times 1 from Eq. 4-10 

for i = t, t+1, ... , n gives: 

n 

Yi + b {Zi - 2Yi^%^TjYj - ZC^Y^} - ii]) 

n 
- iXl - b {iX^Z - 2(iXj)J TjYj - ZC^CiX^)} + i* = 0 

n 

(Yi-iXi) + b {(Z^-iXi?) - 2(Y^-iXj) I TjYj - 2Cj(Y^-iXi)} = 0 
j=l 

n 
2b(Yj^-iXi)[ I TjYj+C^] - (Y^-iXj) = bCZ^-iX^^) (i=t, t+1,.., n) 

^ (Eq. 4-12) 

Now, the n+1 equations in Eqs. 4-10 and 4-2 have been reduced to a 

system of n-t+3 equations: 

n 
Xj + b {X^Z - 2Xj I TjYj - 2C^X^} - rjj = 0 (Eq. 4-11) 

2b(Yi-iXi)[ % TjYj+C^] - (Y^-iXj) = b(Z^-ix/) (i=t, t+1,.., n) 

^ (Eq. 4-12) 

n 
I iTi = 1 - Cg (Eq. 4-2) 

1=1 

Necessity: If Eqs. 4-11, 4-12, and 4-2 are solvable, then 

Y^-iX^^O for i = t, t+1, ..., n. Since for any i = t, t+1, ..., 

n, if Y^-iX2=0, not only Y£=iXp but also Z^=iXj^^ from Eq. 4-12. 

This implies that X^ = X^ for all i = t, t+1 which 

contradicts the definition that X^ f X^. Therefore, Y^-iX^ 5^ 0 
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for any l=t, t+1, n. As a result, Eq. 4-12 can be written 

as : 

n 
I T.Y.+C, = [b(Zi-lXi2)+(Yi-iXi] / 2b(Yi-iXi) (i=t,.., n) 

j=l 
(Eq. 4-13) 

Considering the case i = t, t is such that Xj = X^ for j=l, 2, 

t-1, and Xj. î' Xj. Then, 

= (t-dxj + x^ 

= (t-dxj^ + x^z 

Substituting Yj. and into Eq. 4-13 setting i=t, 

n 
I T.Y. + Ci = [b(Zt-tXi2)+(Yc-tXi] / 2b(Yt-tXj) 

j=l 
{b[(t-l)xi2+x^2_tx^2] + [(t-dx^+x^-tx^]} 

2b[(t-l)xi+xj.-txj] 

= {btx^z-xiz] + [x^-xj]} / 2b[xc-xi] 

= [b(Xt+Xi)+l] / 2b 
n 

[ ^ T.Yj + Ci] is a constant that can be applied to any equation 
j=l 

in Eq. 4-13. 

[b(X^+Xj)+l]/2b = [b(Zj^-iX^2)+(Y^-iXi)] / 2b(Yi-iXi) 

(i = t, t+1, ..., n) 

[b(X^+X^)+l](Yj^-iXp = [b(Z^-iX^2)+(Y^-iXj)] (i = t, n) 

Subtracting the equation for i-1 from each equation for i gives: 

[b(x^+x^)+l](yj^-ixp - [b(xt+xi)+l][yi_i-(l-l)xi] 

= [b(zi-ixi2)+(yi-ixi)] - {b[zi_i-(i-l)xi2]+[yi_i-(i-l)xi]} 

( i  =  t + 1 ,  . . . ,  n )  
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[bcx^+xj)+l][yi-ixi-yi_i+(i-l)xi] 

= b[zi-ixi2-zi_i+(i-l)xi2] + [yi-ixi-yi_i+(i-l)xi] 

(i = t+1, ..., n) 

[b(xt+xi)+l][yi-yi_i-xi] = b[zi-zi_i-xi2]+[yi-yi_i-xi] 

( i  =  t + 1 ,  . n )  

[b(Xt+Xi)+l][Xi-Xi] = b[X^2_x^2]^fx^_x^] (i = t+1 n) 

[b(x^+xi)+i](xi-xp = b(xi+xi)(xi-xi)+(x^-xp 

(i = t+1, ..., n) 

[b(X^+xp+l](X^-Xi) = [b(Xi+xp+l](Xj_-Xi) (i = t+1, ..., n) 

There are two cases that satisfy this equation, i.e., 

i. Xj^ = Xj 

ii. Xi f Xi, then b(Xt+Xj)+l = b(Xj^+X^)+l, X^ = X^ 

Therefore, if Eqs. 4-11, 4-12, and 4-2 (equivalent to Eqs. 4-10 

and 4-2) are solvable, X^ = Xj for i=l, 2, ..., t-1, and X^ = 

Xj, or Xj^ = Xj. for i=t+l, ...,n. This completes the proof of 

necessity. 

Sufficiency; Suppose (Xj^ - X^CXj^ - Xj.) = 0 for i = 1, 2, 

n. That is, either X^ = Xj^ or Xj^ = Xj. for i = 1, 2, n. 

Let be defined as the number of occurrences that Xj = X^ for 

j = 1, 2, .., i. Then Y^ and could be rewritten as; 

Y^ = a^ Xj + (i—a^) X^ 

zi = a^ xj2 + (i-a^) x^z 

Then, - iX^ = a^ X^ + (i-a^) X^ - iX^ = (i-aj^)(X(.-Xj) 

Z^ - iX^Z = a^ Xj^ + (i-a^) X^^ _ ix^2 = (X^2_x^2) 

Substitute the expressions for Y^-iX^ and Z^-iX^^ into Eq. 4-12. 
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2b(Yi-iXi)[ I TjYj+Cj] - (Y^-iXi) = bCZj^-iX^^) (i=t,.., n) 
j=l 

n 

2b(i-ai)(x^-xj)[ I tjyj+ci]-(i-ai)(xc-xi)=b(l-ai)(xc2-xi2) 

(i =• t, t+1, n) 

2b(i-aj^)(x^-xj)[ I tjyj+ci]=b(l-ai)(xt2-xi2)+(i-ai)(xt-xi) 

(i = t, t+1, n) 

n 

2b(i-a^)(xt-xj)[ I tjyj+ci] = (i-aj^xx^-x^) [b(xt+xi)+l] 

(i = t, t+1, ..., n) 

Since i-a^ ^ 0 and X^ # X^, 

n 
I T.Y. + Ci = [b(X^+Xj)+l] /2b (Eq. 4-14) 

j=l 

Now the n+1 equations in Eqs. 4-10 and 4-2 have been reduced to 

three equations : 
n 

Xj + b {X^Z - 2Xj I TjYj - 2C^Xj} - = 0 (Eq. 4-11) 

n 
I T.Y. + Ci = [b(Xt+Xp+l] / 2b (Eq. 4-14) 

j=l 

n 
I iTi = 1 - Cg (Eq. 4-2) 

i=l 

Substituting Eq. 4-14 into Eq. 4-11 yields: 

n 

Xi + b {X^Z - 2Xj[ I TjYj+Ci]} - ij) = 0 

Xj + b {X^Z - 2Xj[b(Xt+Xj)+l]/2b} - 4, = 0 

Xi + b {X^Z - X^Xj. - X^2 _ x^/b} - i|» =• 0 
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xj - bx^xt - xj - i|) = 0 

ij» = -bxjx^ 

Therefore, the three equations (Eqs. 4-11, 4-14 and 4-2) are 

always solvable. This completes the proof of Theorem II. 

3. Locations of relative minimums for one or two payoff values 

Theorem II proved that if there are at most two distinct payoff 

values for n states of nature, it is necessary and sufficient for a 

relative minimum index of utility to exist. In other words, a relative 

minimum does not exist if there are more than two distinct payoff values. 

Therefore, for the case that there are more than two distinct payoff 

values, the global minimum index of utility must occur at the corner 

boundary points. 

In the case of only one payoff value, any set of T values, (T^, T2, 
n 

..., T^), satisfying ^ IT^ = 1 - CQ and T^ 0 is one of the multiple 
1=1 

solutions that result in the relative minimum index of utility. Since 

there is only one payoff value, the maximum and minimum Indexes are both 

equal to the payoff value. 

In the case of two distinct payoff values, the relative minimum 

Indexes can be located by solving Eqs. 4-14 and 4-2. By subtracting X^ 

times Eq. 4-2 from Eq. 4-14, Eq. 4-14 becomes, 

n n 

I Vi + Ci - X^( I IT^) = [b(Xt+Xi)+l]/2b - XiCl-Cg) 
1=1 1=1 

Substituting = ®l^l (i~a^)X^, 
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n n 
I [aj_xi+(i-aj_)xt]ti - % ix^t^ = [bcx^+x^+lj/zb - x^ + x^ 
i=l 1=1 

I {[aixi+(i-ai)xt]-ixi} = [bx^+bxi+l-abxjl/zb + x^cq -
1=1 

I {(l-ai)Xt-(l-ai)Xi} = [bCX^-X^+l]/2b + XjCg -
1=1 

I (l-ai)(xt-xi)ti = [b(xt-xi)+l]/2b + xjcq -
1=1 

Recall that: 

CQ = C + C" 

= c'xj + c"x(. 

Cg = C'Xj2 + C"X(.2 

Substituting the expression for Cq and Cj^ yields, 

I (l-ai)(X^-Xj)Ti = [b(Xt-Xj)+l]/2b + Xi(C'+C") - C'Xj - C 
1=1 

I (i-ai)(Xt-Xi)Ti = (Xt-Xi)/2 + l/2b - (Xt-Xi)C" 
1=1 

I (l-a^)T^ = 1/2 + l/2b(Xj.-Xj) - C" (since X^ ^ X^) 
1=1 

t-1 n 

I (l-ai)Ti + I (i-aj^)T^ = 1/2 + l/2b(Xt-Xi) - C" 
1=1 l=t 

l (l-aj,)TjL = 1/2 + l/2b(Xj.-X]^) - C" (since = 1 for 1=1 
i=t 

Eq. 4-14 Is replaced by Eq. 4-15. 
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n 
I (l-ai)Ti = 1/2 - C" + l/ZbCX^-xp (Eq. 4-15) 

i=t 

By subtracting Eq. 4-15 from Eq. 4-2, Eq. 4-2 becomes, 

n n 
% ITi - l (i-ai)?! = 1 - CQ - 1/2 + C" - l/2b(Xt-Xi) 

i=l i=t 

t-1 n n n 
% iTi + l iT^ - % ITi + I aiTi = 1 -C -C" -1/2 +C" -l/2b(X^-Xj) 

1=1 i=t i=t i=t 

t-1 n 
I ITi + l = 1/2 - C - l/2b(Xt-Xi) 
i=l i=t 

Since a^ = i for i = 1, 2, ..., t-1, Eq, 4-2 is replaced by Eq. 4-16. 

n 
l a^Ti = 1/2 - C - l/2b(X(.-Xj) (Eq. 4-16) 

i=l 

Eq. 4-3 remains as follows: 

2 0 (for i = 1, 2, ..., n) (Eq. 4-3) 

If there are only two distinct payoff values for n states of nature, 

any solution to Eq. 4-15 and Eq. 4-16 results in a relative minimum index. 

Since there are multiple solutions for Eqs. 4-15 and 4-16, multiple 

relative minimum indexes can be obtained from Eqs. 4-15 and 4-16. 

However, with the constraints of Eq. 4-3, the multiple relative minimum 

indexes may not be located inside the feasible region. 

It is important to be able to identify conditions for which at least 

one relative minimum index exists inside the feasible region. Since ^ 

0, aj^ > 0, and (i-a^) ̂  0 for i = 1, 2, ..., n, the left hand side of both 

Eqs. 4-15 and 4-16 are greater than or equal to zero. The corresponding 

right hand side of these two equations must also be greater than or equal 
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to zero. Therefore, 1/2 - C" + l/ZbCX^-Xi) > 0 and 1/2 - C - l/2b(x^-xp 

> 0 are required for at least one relative minimum index of utility to 

exist inside the feasible region. The necessary conditions can be 

rewritten as: 

- 1/2 + C" < l/2b(X^-Xi) < 1/2 - C (Eq. 4-17) 

Despite the fact that the necessary conditions, Eq. 4-17, are met, it 

is still possible that none of the multiple relative minimums exists 

inside the feasible region. In other words, the necessary conditions 

indicate that there is no relative minimum inside the feasible region if 

they are not met. But the fulfillment of the necessary conditions does 

not guarantee there is at least one relative minimum inside the feasible 

region, 

A basic solution to Eqs. 4-15 and 4-16 has at most two unknowns which 

are not equal to zero. There are (n)(n-l)/2 basic solutions to Eqs. 4-15 

and 4-16. Any linear combinations of these basic solutions is also a 

solution to Eqs. 4-15 and 4-16. Therefore, unless all the basic solutions 

are outside the feasible region, at least one relative minimum occurs 

inside the feasible region. 

4. Common value of multiple minimum indexes of utility for two payoffs 

In Section E.2, it was proved that no relative minimum index of 

utility exists if there are more than two distinct payoff values for n (n 

>3) states of nature. If there is only one payoff value, there is always 

only one value of the index of utility which equals the payoff value since 

the variance is always zero. 
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If there are only two distinct payoff values for n (n > 3) states of 

nature, multiple relative minimum indexes of utility can be located by 

solving Eqs. 4-15, 4-16, and 4-3. 

n 
I (i-ai)Ti = 1/2 - C" + l/2b(Xj.-Xi) (Eq. 4-15) 

i=t 

n 
I a^Ti = 1/2 - C - l/2b(Xt-Xi) (Eq. 4-16) 
i=l 

Ti 0 (for i = 1, 2, ..., n) (Eq. 4-3) 

Although multiple relative minimum indexes of utility exist, they result 

in a common value. Therefore, any solution from Eqs. 4-15, 4-16, and 4-3 

is sufficient to find the common value of the multiple relative minimums. 

Since there are two equations and n (n ̂  3) unknowns, a basic 

solution to Eqs. 4-15 and 4-16 has at most two unknowns which are not 

equal to zero. It is then reasonable to assume that only and are 

not equal to zero while setting all other unknowns equal to zero. With 

the above assumption, Eqs. 4-15, 4-16 and 4-3 can be rewritten as follows, 

(t-a^)T^ = 1/2 - C" + l/2b(Xj.-Xi) 

a^ti + a^tc = 1/2 - c - l/2b(xt-xi) 

ti > 0, t, > 0 

Since the payoff values for the states of nature from one to t-1 are all 

equal to X^ according to the definition of t, then a^ = t-1. Therefore, 

T^ = 1/2 - C" + l/2b(Xt-Xi) (Eq. 4-18) 

t^ = 1/2 - c - l/2b(xt-xi) - (t-l)tt 

= 1/2 - C - l/2b(Xt-Xi) - (t-l)/2 + (t-l)C" - (t-l)/2b(X^-Xi) 

= 1 - C + (t-l)C" - t/2 - t/2b(X^-Xj) (Eq. 4-19) 
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The expressions for and in Eqs. 4-18 and 4-19 represent one of the 

basic solutions to Eqs. 4-15 and 4-16. This solution is feasible if both 

Tj^ and T^ are positive. The solution is infeasible, (in other words, it 

is outside the feasible region) if either T^ or T^ is negative. Whether 

or not the resulting values of T^ and T^ are feasible, the common value of 

the minimum index of utility can always be evaluated from these values of 

Tj and T^. From Eq. 4-1, 

I = EXP + b * VAR (Eq. 4-1) 

= Ci + % T^Yi + b {Cg + I T^Zi - - [ % TiYi]2 - 2C^[ I T^Y^]} 
1=1 1=1 i=l i=l 

n n n 

= + I T^Yi + b {Cg + I T^Zi - [Cl + ( % T^Y^)]^ } 
i=l 1=1 i=l 

= Ci + T^Yi + T^Yt + b {Cg + + T^Z^. - [C^ + T^Y^ + T^Y^]^ } 

(Eq. 4-20) 

Since Yj^ = and Yj. = (t-l)Xj^ + Xj,, the terms Cj^ + T^Y^ + T^Y^ in Eq. 

4-20 can be expressed as follows, 

ci + t^yi + t^yc 

= ci + tjxi + t^[(t-l)xj+x^] 

= C'Xj + C"X^ + TjXi + T^[(t-l)Xi+Xt] (since Cj = C'X^ + C"X^) 

Substitute Eqs. 4-18 and 4-19 for T^ and T^, 

cj + tiyi +t(.y, 

t t 

= C'Xi + CXj. + [1 - C + (t-l)C" ]Xi 
2 2b(xj.-xp 

1 1 
+ [—— + —— — - c"] [ ( t—1 )Xj^+Xj. ] 

2 2b(xt-xi) 
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ex, + C"X^ + Xi - C'Xj + (t-l)C"Xj -
2 2b(xt-xi) 

(t-l)Xi X. (t-l)X,+Xt 
+ + —+ - C"(t-l)Xi - C"X^ 

2 2 2b(x^-xi) 

xj x^ (c-l)xi+xc - txj 
+ + 

2 2 2b(x.-xp 

(x^-x^) x.+x 

2b(x.-xi) 

b(xj.+xi) + 1 
(Eq. 4-21) 

Since = X^^ and Zj. = (t-DXj^ + X^^, the terms C2 + T^Z^ + T^Z^ in Eq. 

4-20 can be expressed as follows, 

c2 + tlzl +vt 

= cg + t^x^z + t^[(t-l)xi2+x^2] 

= C'Xj2 + C"Xj.2 + T^X^Z + T^.[(t-l)Xj2+X^2] (since Cg = C'X^^ + C'X^^) 

Substitute Eqs. 4-18 and 4-19 for Tj^ and Tj., 

c2 + t^zi 

2 2b(X.-X,) 

1 1 , , 
+ [ + c"] [(t-l)x/+xj.2] 

2 2b(x^-xi) 

txi^ tx^z 

= C'X,2 + C"X^^ + X,2 - C'X,2 + (t-l)C"X,2 --

2 2b(xc-xi) 
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(t-dxj^+xj.^ - cx^z 

2 2 2b(x^-xi) 

x^2+xj2 (x^z-x^z) 

2 2b(xt-xi) 

b(X.2+x 2) + (X.+X,) 
E—i~ (Eq. 4-22) 

2b 

Substitute Eqs. 4-21 and 4-22 into Eq. 4-20, 

I = Ci + T^Yi + + b {Cg + - [C^ + + T^Y^]^ } 

b(X.+Xi)+l b(Xj.2+x 2)+(x +X,) b(Xr+Xi)+l ^ 

2b 2b 2b 

b(X.+Xi)+l b(X.2+x 2)+(x +x,) b^(X.+X,)2+2b(X.+X,)+l 
+ b {------

2b 2b 4b^ 

b(X.+X,)+l 2b2(x.2+x,2)+2b(X.+Xi)-b2(X.+X,)2-2b(X.+X,)-l 
5__1 + b { } 

2b 4b2 

bCX^+Xj )+l 2b2Xj. 2+2b2Xi Z-b^XcZ-b^Xi 2-2b2x^Xj-l 

2b 4b 

b(x^+xp+l b2(xt2+x^2_2x^xp-l 

2b 4b 

b(x^+xi)+l b2(xt-xi)2 - 1 

2b 4b 

2b(X(.+Xj) + 2 + b2(X^-Xj)2 _ i 

4b 

b2(xj.-xj)2 + 2b(xc-xi) + 1 + 4bxi 

4b 
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[bcxf-xi) + 1]2 
s ————————————— + Xj (Eq, 4—23) 

4b 

If there are only two distinct payoff values, Eq. 4-23 is the common value 

of the multiple relative minimum indexes of utility. Notice that this 

common value becomes the global minimum index of utility only if at least 

one relative minimum index exists inside the feasible region. 

5. Numerical example 

Consider a strategy with five possible states of nature. The payoff 

values and the minimum differences between the states of nature are: 

xj=10, x2=20, x3=20, x^^io, xg^lo 

kj=.10, k2=.04, kgs.OS, k^=.02, kj^.Ol 

And the coefficient of risk aversion is -0.25. 

Solution to the numerical example: By the definition of the 

minimum requirements of probabilities are: 

ml=.20, m2=.10, m3=.06, m4=.03, m5=.01 

Since there are only two distinct payoffs, the coefficients C and C" are: 

C = Mj^ + + Mj = .24 and C"= M2 + = .16 

Relative minimum indexes of utility: First, check the necessary 

conditions. 

- 1/2 + C" < l/2b(X^-Xj) < 1/2 - C (Eq. 4-17) 

- 0.34 < -0.20 < 0.26 

Since the necessary conditions are met, the relative minimum index of 

utility can be located by using Eqs. 4-15, 4-16, and 4-3. From Eq. 

4-15, 
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n 
i (i-ai)ti = 1/2 - c" + l/2b(xt-xi) 

l=t 

Tg + 2T3 + 2T4 + 2T5 = .5 - .16 + l/2(-0.25)(20-10) 

From Eq. 4-16, 

n 
l aiTi = 1/2 - C - l/2b(X(.-Xi) 

1=1 

Tj + T2 + T3 + 2T4 + 3T5 = .5 - .24 - l/2(-0.25)(20-10) 

Solving these two equations simultaneously, one of the basic 

solutions is: 

= .32, Tg = .14, T3 = = T5 = 0 

Since this is a feasible solution, the resulting relative minimum is 

a global minimum index of utility. And the value of the global 

minimum index of utility can be obtained by Eq. 4-23, 

[bcx^-xj) + 1]2 

4b 

[(-0.25)(20-10) + 1]2 
+ 10 

4(-0.25) 

= 7.75 

Indexes of utility at corner boundary points: The five corner 

boundary points are T^^ = (I-CQ)/! (1 = 1, 2, 3, 4, or 5) with all 

other Tj (j f 1) set at zero. The values of the mean, variance, and 

index at the corner solutions can be evaluated and expressed in the 

following table, 
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Corner 
Boundary Resulting Probabilities Mean Variance Index of 

Point pi ^2 p3 p4 p5 Value Value Utility 

1 .80 .10 .06 .03 .01 11.60 13.44 8.24 

2 .50 .40 .06 .03 .01 14.60 24.84 8.39 

3 .40 .30 .26 .03 .01 15.60 24.64 9.44 

4 .35 .25 .21 .18 .01 14.60 24.84 8.39 

5 .32 .22 .18 .15 .13 14.00 24.00 8.00 

The resulting global minimum index of utility, 7.75, lies outside the 

range 8.00 to 9.44 defined by the corner boundary points. The global 

maximum index of utility is 9.44. 

6. Summary of solutions for n dimensional problem 

In summary, the assessment of the extreme indexes of utility under 

strict ranking in the context of incomplete knowledge must proceed in the 

following way. 

a. Global maximum At least one global maximum occurs at the 

corner boundary points despite the number of distinct payoff 

values. 

b. Global minimum. 

i. If there are more than two distinct payoff values, the 

global minimum index of utility must occur at corner 

boundary points. 

ii. If there are only two distinct payoff values, it is possible 

that relative minimums exist inside the feasible region. 

Check the necessary conditions using Eq. 4-17. If the 

necessary conditions are not met, the global minimum will 

still occur at corner boundary points. If the necessary 
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conditions are met, Eqs. 4-15, 4-16, and 4-3 are served to 

locate the relative minimums. Check all basic solutions to 

Eqs. 4-15 and 4-16. 

Case 1: If at least one basic solution of Eqs. 4-15 

and 4-16 is feasible, the global minimum index of 

utility can be calculated by Eq. 4-23. 

Case 2; If all the basic solutions to Eqs. 4-15 and 

4-16 are not feasible, the global minimum index of 

utility must occur at one of the corner boundary 

points. 
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V. DECISION PROCEDURE IN THE CONTEXT OF UNCERTAINTY AND RISK 

A. Nature of the Coefficient of Risk Aversion 

Kmietowicz and Pearman [1981] incorporated the expected value and the 

variance into a single index, index of utility, by introducing the 

coefficient of risk aversion under weak ranking in the context of 

incomplete knowledge. However, they did not provide a methodology to 

determine the value of the coefficient of risk aversion. Constant [1983] 

developed an optimal decision line in the context of uncertainty for one 

set of mutually exclusive alternatives. In the decision procedure, 

Constant related the coefficient of risk aversion to the minimum 

attractive rate of return (MARR) by an angular coefficient. The central 

theme of Constant's decision procedure was to ascertain the appropriate 

value of the angular coefficient. 

Constant assumed a linear relationship between the coefficient of 

risk aversion and MARR which can be expressed as follows, 

b = a^ * m (Eq. 5-1) 

where b = coefficient of risk aversion 
a^ = angular coefficient 
m = minimum attractive rate of return 

Recall that the coefficient of risk aversion is a trade-off between the 

expected value and the variance of payoff values. A negative coefficient 

of risk aversion denotes an aversion to risk; a positive coefficient of 

risk aversion denotes a preference to risk. A negative b value therefore 

indicates an attempt to avoid risk by imposing a penalty on the variance. 

As the value of b becomes Increasingly negative, the more averslve to risk 

(conservative) the decision maker becomes. Hence as MARR increases, the 



www.manaraa.com

98 

coefficient of risk aversion, b, becomes more negative at a constant rate. 

This constant rate is defined as the angular coefficient with the symbol 

In Constant's decision procedure, both positive and negative a^ values 

were considered as possible candidates for the final decision line. 

However, careful study of the relationship between the coefficient of risk 

aversion and MARR denies any consideration of positive a^ values based on 

the following logic: 

If a^ is positive, the value of b becomes more positive (i.e., more 

risk preferable) as the value of the minimum attractive rate of 

return becomes more positive (i.e., more risk aversive). This 

contrary statement dictates that the assumption of a positive a^ value 

cannot be true. 

Therefore, since all positive a^ values should be discarded, the upper 

limit of a^ values must be zero. 

B. Constant's Decision Procedure in the Context of Uncertainty 

By assuming equal probabilities for all possible states of nature 

(Bayes-Laplace criterion), Constant [1983] developed the decision 

b 

0 marr 
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procedure for the context of uncertainty. Steps in this decision 

procedure were as follows; 

1. For each state of nature, solve for the rate of return comparing 
each alternative with present conditions and with one another. 

2. Through the use of network diagrams, form a decision line for 

each state of nature. 

3. From the decision lines for all possible states of nature, 
develop the line of dominance. The line of dominance finds the 
ranges of MARR for which the strategies are always optimal. 
Between the dominant ranges lie the indeterminable regions. 

4. For each pair of alternatives, i.e., alternative compared with 
present conditions or compared with one another, draw a line of 
indiscernibility between the highest rate of return and the 
lowest rate of return representing the "best case" and "worst 
case" scenarios. 

5. Using Bayes-Laplace criterion, calculate the expected value and 
variance of the payoffs (AEX or PEX) obtained from all possible 
states of nature for each pair of alternatives. 

a) Calculate AEX or PEX for each state of nature at an 
initial trial rate of return. 

b) Calculate the expected value and variance for 
the AEX or PEX value of each strategy. 

6. Combine the expected value and variance into a single index, 
index of utility. 

I = EXP[AEX] + b * VAR[AEX] 

= EXP[AEX] + a * m * VAR[AEX] (Eq. 5-2) 

where I = index of utility to the decision maker 
EXP[AEX] = expected value of the criteria, i.e., AEX 
VAR[AEX] = variance of the criteria 
b = coefficient of risk aversion 
a = angular coefficient 
m = trial rate of return 

7. Starting with an arbitrary £ value, by trial and error find the 
utility index rate of return for each alternative compared over 
present conditions and with one another. This is the rate of 
return that causes the index of utility to equal zero. 

\ 
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I = EXP[AEX] + a * m * VAR[AEX] = 0 

For each trial rate of return, the following will result; 
a) AEX for all possible states of nature 
b) EXP[AEX] and VAR[AEX] 
c) Index of Utility, I. 

Repeat this step for a range of £ values. 

8. Through the use of network diagrams draw a decision line based on 
the utility index ROR for each £ value used in Step 7. 

9. Plot a curve showing the utility index ROR against the a^ values 
for each pair of alternatives on the decision lines of utility 
index ROR. 

10. On each curve of the utility index ROR respect to the a^ values, 
darken the section corresponding to the indiscernible region 
obtained in Step 4. The extreme points of the indiscernible 
region represent the "worst case" scenario (lowest rate of 
return) and the "best case" scenario (highest rate of return). 
Constant refers to the corresponding a^ value for the "worst case" 
scenario (lowest rate of return) as This value is the 
lower limit for possible a^ values for each pair of alternatives. 

11. By inspection of the values for each pair of alternatives, 
choose the maximum (least negative) of the values. This 
value is referred to as max(^^^). This value is used to 
calculate the final decision line. It is chosen because it 
represents the lower limit of a common range of a^ values. 

+==================+ 

fmin ® 

+=============+ 

fmin ** 0 

+=======================+ 

fmin ® 

+=====================+ 

fmin 0 

•< more conservative less conservative >• 

The starred value is max(a^^„). A final decision line based 
on this a value gives the decision maker the most conservative 
guideline. This final decision line leads to the selection of 
alternatives that will result in a minimum loss even if the worst 
state of nature occurs. As the a^ values become less negative, 
the decision maker's choices become less conservative. 
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12. Recalculate the final decision line based on the value. 

Constant also described a_„„ values. The a_„„ values were defined as • •ffloX — Ulet A 

the corresponding £ value for the "best case" scenarios (highest rate of 

return for the indiscernible region). The values are always positive 

which is meaningless as discussed in Section A. Hence, values will 

not be recognized in this research. 

Apart from deviating from the incorporation of values into the 

analysis, the logic used by Constant is quite correct: 

1. The monotonically decreasing feature of the curves (utility index 

ROR in respect to the angular coefficient) dictates a one-to-one 

correspondence between the utility index ROR and the a^ values for 

each pair of alternatives. Therefore, one and only one 

corresponding £ value can be found for any given rate of return, 

2. The use of the index of utility, considering both the expected 

value and variance which are traded off by the coefficient of 

risk aversion, enables the analyst to evaluate all alternatives 

by a single criterion. 

3. The ™ax(ajjj^^) value found by Constant causes the final decision 

line to ignore a strategy if the minimum attractive rate of 

return (MARR) is set higher than the rate of return of the "worst 

case" scenarios. In other words, the final decision line is 

extremely risk aversive toward the initial investments 

(alternatives compared to present conditions). As the MARR value 

becomes lower, the final decision line is less risk aversive. As 
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a result, incremental investments could be selected by the final 

decision line. The incremental investments may result in either 

a higher or a lower rate of return than MARR. However, the 

incremental investments will still result in a rate of return 

higher than MARR in the long run. 

C. Application of Constant's Decision Procedure 

Constant's technique is best illustrated by presentation of a 

problem. Let us consider the comparison of four mutually exclusive energy 

conservation measures. A, B, C, and D, being compared over present 

conditions, P, as well as with one another. Data for the four projects 

are as follows: 

Cost of Cost of Cost of Life of 

Investment Electricity Natural Gas Project 

( $ )  ($/yr) ($/yr) (yrs) 

P 8,000.00 6,000.00 -

A 10,000.00 7,000.00 3,500.00 5 

B 14,000.00 3,200.00 6,000.00 5 

C 16,000.00 8,000.00 600.00 5 

D 20,000.00 3,450.00 4,000.00 5 

Let there be four possible states of nature, , N2* ^3» and as 

follows : 

«2 N3 ___N4__ 

Escalation rate of electricity 0% +2% +2% +1% 

Escalation rate of natural gas 0% +1% -1% +3% 

The following steps are necessary for Constant's procedure: 

1. For each state of nature, the rates of return were calculated 
comparing each project with present conditions and with each 
other. For state of nature , the rates of return are as 
follows : 
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Alternative A 
B 
C 
D 

Alternative A 
B 
C 
D 

p 
Internal ROR 

A 

over 
B C 

22.11% 
21.15% 
20.42% 
19.06% 

18.72% 
17.57% 
15.94% 

15.24% 
14.05% 13.46% 

1 N2, the rates of return are as follows : 

P 
Internal ROR 

A 
over 

B C 

23.68% 
23.57% 
21.63% 
21.08% 

23.30% 
18.12% 
18.45% 

5.91% 
15.03% 18.93% 

! Ng; the rates of return are as follows : 

P 
Internal ROR 

A 
over 

B C 

Alternative A 21. ,96% 
B 23. .57% 27. 33% 

C 19. ,22% 14. 43% —48. 22% 

D 20. ,38% 18. 81% 12. 40% 24. 61% 

For state of nature : N, r, the rates of return are as follows : 

Internal ROR over 
P A B C 

Alternative A 
B 
C 
D 

25.08% 
22.36% 
24.04% 
20.99% 

14.99% 
22.29% 
16.71% 

34.26% 
17.79% 7.11% 

2. Through the use of network diagrams form a decision line for each 
state of nature. For state of nature N^, the network diagram is 
as follows: 

22.11 

19.06 
21.15 

20.42 
^'•^'14.05 15.94 

13.46 
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If these estimates for N, were single-valued estimates, the 
following conclusion would be drawn: 

If MARR is greater than 22.11%, choose present conditions. 
If MARR is between 18.72% and 22.11%, choose alternative A, 
If MARR is between 15.24% and 18.72%, choose alternative B, 
If MARR is between 13.46% and 15.24%, choose alternative C. 
If MARR is less or equal to 13.46%, choose alternative D. 

This logic was used to establish a decision line for each 
possible state of nature as shown as follows. The four decision 
lines facilitate the search for the zones of dominance resulting 
in the line of dominance. 

' 1 -

D B 

13.46% 15.24% 18.72% 22.11% 

'2" 

15.03% 23.30% 23.68% 

12.40% 

—+ 

23.57% 

+— 
22.29% 7.11% 25.08% 

3. From the decision lines for all possible states of nature, 
develop the line of dominance as follows : 

D indeterminable region P 

7.11% 25.08% 

4. For each pair of alternatives, i.e., alternative compared with 
present conditions or compared with one another, draw a line of 
indiscernibility between the highest rate of return and the 
lowest rate of return representing the "best case" and "worst 
case" scenarios, respectively. 

For the ten pairs of alternatives, i.e., 1) A over P; 2) B over 
P; 3) B over A; 4) C over P; 5) C over A; 6) C over B; 7) D over 
P; 8) D over A; 9) D over B; and 10) D over C. Considering A 
over P, state of nature gives the lowest rate of return. 
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21.96%; state of nature gives the highest rate of return, 
25.08%. Therefore, the indiscernible region for A over P is 
between 21.96% and 25.08%. The indiscernible regions for all 
pairs are as follows: 

^ _ p ^ — — ——— ——___****** ——— 

21.96% 25.08% 

g _ p — ———_———— ————— —***** — 

21.15% 23.57% 

g _ ^ ̂ —— ———— —************************—— 

14.99% 27.33% 

Q _ p -I —————— **********— 

19.22% 24.04% 

q — ^ ̂ — —————— ***************** — 

14.43% 22.29% 

Q — g ************************************************************** 

0 34.26% 

Q — p ^ — — — — —*****— — — 

19.06% 21.08% 

g — ^ ̂ ———— — — — —******_— — — ——— 

15.94% 18.81% 

J) — g ^ —— — ——--—************- — — 

12.40% 17.99% 

q — c +— —********************************************— 

7.11% 24.61% 

5. Using Bayes-Laplace criterion, calculate the expected value and 
variance of AEX obtained from all possible states of nature for 
each pair of alternatives. 

a) Calculate AEX for each state of nature at an initial 
trial rate of return, 

where: 

AEX = { % [FS^*(l+epP^ + FS2*(l+ep2)J] * (p/f)j - B } 
j=l a 

* (a/p)5 
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For alternative A compared to present conditions, the 
AEX values for the various states of nature using an 
initial trial rate of return of 20% were as follows; 

Ni: ®F1 
N2: ®F1 
Ng: ®F1 
N4: ®F1 

= 0%, ep2 = 0%, AEXj = 156.20 
= 2%, ep2 = 1%, AEXg = 277.08 
= 2%, ep2 =-1%, AEXo =• 145.04 

= 1%, ep2 = 3%, AEX4 = 388.14 

b) Calculate the expected value and variance for the AEX 
value for each pair of alternatives. 

4 
EXP[AEX] = % p. * AEX. 

j=l •' 

VARfAEX] = % Pj * (AEX.)2 - (EXP[AEX])2 
j = l 

Since by Bayes-Laplace assumption, P^ = P2 = Pg = P4 = 
25%, the expected value and variance for alternative A 
compared with present conditions were as follows: 

EXP[AEX] = 241.62 

VAR[AEX] = 9,837.08 

6. Combine the expected value and the variance into an index of 
utility. 

I = EXP[AEX] + a * m * VAR[AEX] 

where £ = angular coefficient 
m = trial rate of return 

Continuing the example illustrated above (alternative A over 
present conditions) and assuming the angular coefficient is set 
at -0.02 and the trial rate of return at 20%, the index of 
utility is calculated as follows: 

I = 241.62 + (-0.02)(20%)(9837.08) = 202.27 

7. Starting with an arbitrary a_ value, find the utility index ROR 
for each alternative compared over present conditions and with 
one another. This is the rate of return that causes the utility 
function to equal zero. 

If the a value is set at -0.02, the utility index ROR of 22.65% 
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for alternative A compared with present conditions is found by 
trial and error as follows: 

Setting i equal to 22.65%, 

N ®F1 
= 0%, ®F2 = 0%, AEXj =» -40.88 

®F1 
= 2%, ®F2 = 1%, AEXg = 78.05 

®F1 
= 2%, ®F2 =-1%, AEXg ~ -51.90 

®F1 = 1%, ®F2 = 3%, AEX4 = 187.27 

1-
no: 

ng: 

n4: 

By Bayes-Laplace assumption, = P2 = Pg = P4 = 25%, the 
expected value and variance were as follows : 

EXP[AEX] = 43.14 

VAR[AEX] = 9,521.34 

The index of utility thus reduces to zero: 

I = 43.14 + (-0.02)(22.65%)(9521.34) = 0 

For £ = -0.02, the utility index ROR for the other pairs of 
alternatives compared over present conditions and each project 
compared to one another are summarized as follows: 

Internal ROR on Utility function over 
P A B C 

Alternative A 
B 
C 
D 

22.65% 
22.20% 
19.80% 
20.00% 

18.75% 

16.98% 

17.14% 

5.12% 
14.38% 13.14% 

Step 7 is repeated for a range of negative £ values, i.e., 0, 
-0.02, -0.04, -0.06, -0.08, -0.10, -0.12, -0.14, -0.16, and 

-0.20.  

Through the use of network diagrams draw a decision line based on 

the utility index ROR for each £ value used in Step 7. 

a = 0, 

14.86% 

+ + 
21.30% 23.22% 

a = -0.02, 

14.38% 

—+ 

18.75% 

—+ 

22.65% 



www.manaraa.com

108 

«= -0.04, 

D A P 
H + + 

0 16.79% 22.10% 

= -0.06, 

D A P 
H — 4 + 

0 16.46% 21.57% 

a^ = -0.08, 

D A P 
+———— —————— —— 1——————————4 —— 

0 16.14% 21.05% 

£ = -0.10, 

D A P 
+—————————————————————— ———h———————(•———— 

0 15.82% 20.55% 

£ = -0 .12,  

D A P 
4 — — — 1 ————— I—— 

0 15.52% 20.06% 

£ = -0.14, 

D BP 
+—————— —— ——4———  — —  — — — — — — — 4 — — —  

0 11.96% 19.62% 

£ = -0.16, 

D BP 
+——— — — + ——————— — — — — — 

0 11.61% 19.23% 

£ = -0.20, 

D BP 
4—————————————— I —————— ——— 1 — — 

0 10.98% 18.48% 

Note that only five pairs of viable alternatives, i.e., A over P, 
B over P, B over A, D over A, and D over B appear on these 
decision lines of utility index ROR. These pairs completely 
dominate the other pairs of alternatives. Subsequently, only 
these pairs are carried for further discussion. 

Plot a curve showing the utility index ROR against the values 
for each pair of alternatives that appeared on the decision lines 
of utility. See Figure 1. 
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Utility 
Index 
ROR (%) 

21.96 

^ 20.0 

B-P 

A-P 

j-15.0 
D-A 

D-B 

10.0 

B-A 
-.045 

- .20 . 1 6  . 1 2  -.08 -.04 0 
Angular Coefficient 

Figure 1. Selection of final angular coefficient 
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10. Darken the section on each curve that corresponds to the 
indiscernible regions obtained in Step 4. See Figure 1. For 
example, for curve A over P, the extreme point is 21.96% ("worst 
case" scenario). The corresponding value is -0.045 for the 

"worst case" scenario. 

For the remaining curves, the values corresponding to the 
"worst case" scenarios are as follows: 

Pair of alternatives Corresponding 

A over P -0.045 ** 
B over P -0.066 
B over A -0.058 
D over A -0.092 
D over B -0.115 

11. By inspection of the a values for the viable alternatives, the 

maximum of the a^^„ values is -0.045. 

12. Recalculate the final decision line based on the max(^j^^) value 
of -0.045 as described in Step 7. The final decision line of 
utility index ROR is as follows: 

D A P 
+---- ———— — ——— -4 — 1 

0 16.71% 21.96% 

For the four possible states of nature in this problem, the decision 

maker will choose the alternative based on the following reasoning; 

If MARR is greater that 21.96%, choose present conditions. 
If MARR is between 16.71% and 21.96%, choose project A. 
If MARR is less that 16.71%, choose project D. 

Referring back to the line of dominance in Step 3, note that the 

cutoff point for projects to be initially accepted over present conditions 

has become more stringent. This phenomenon reflects the fact that the 

most conservative a^ value was chosen to formulate the final decision line. 

Most conservatively, the decision does nothing if MARR is greater or 

equal to 21.96% even it is likely to realize a rate of return higher than 

21.96%. The range of MARR values for which it is economically feasible to 
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choose project A has been determined. The indeterminable region between 

project D and project A has now been clarified. Acceptance of project D 

becomes less stringent reflecting the fact that the decision maker is 

willing to take some risks as the MARR value becomes lower. Project D can 

now be accepted if MARR is less than 16.71% versus 7.11%. The fact that 

all possible states of nature have been considered lead to a higher 

probability of accepting project D. 

D. Simplified Approach for Constant's Decision Procedure 

Although the decision procedure developed by Constant is correct 

theoretically, it is very tedious and time consuming to apply. Therefore, 

Constant's approach for determining the final decision line under the 

context of uncertainty has been simplified by this author. 

The first, and fourth steps (Steps 2 and 3 are eliminated) of the 

simplified approach are the same as in the Constant's approach. 

Addressing the lines of indiscernibility developed in Step 4, let the 

lowest rate of return ("worst case" scenario) be defined as i^^^, and the 

highest rate of return ("best case" scenario) as 

Because of the one-to-one correspondence between the utility index 

ROR and the angular coefficients. Figure 1, there is one and only one 

angular coefficient correspondent to each utility index ROR for any pair 

of alternatives. Also, the index of utility is equal to zero for each 

utility index ROR at the corresponding angular coefficient. The equation 

for the index of utility, Eq. 5-3, can be rewritten as follows: 
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1 = 0 =  E X P [ A E X ]  +  b  *  V A R [ A E X l  

= EXP[AEX] + a * m * VAR[AEX] 

Therefore, the corresponding angular coefficient can be found by the 

following equation: 

-EXP[AEX] 

~ (ni)(VAR[AEX]) 

The possible range of angular coefficients corresponding to the line of 

indiscernibility, with upper limit of and lower limit of can 

now be calculated by directly using the following equations; 

- EXP[AEX] 
(Eq. 5-4) 

- EXP[AEX]j 

(ij,MAX)(var|aex]j) 

where: j = a certain pair of alternatives 
a. a. = lower and upper limit of angular coefficient, 
—J yiaxu —J 

respectively 
ij max ~ lowest and highest rates of return on the 

* ' line of indiscernibility, respectively 
EXP[AEX]J = expected value of payoffs based on 

VAR[AEX]j = variance of payoffs based on or 

Because i^^^ is the smallest rate of return among all possible states of 

nature for any pair of alternatives, the payoffs (AEX or PEX) for the 

various states of nature must all be greater than or equal to zero. 

Therefore, the expected value of the payoffs, EXP[AEX], will always be 

positive based on i^^^. By the same reasoning, the expected value of the 

payoffs will always be negative based on i^g^' Taking alternative A over 

P as an example, the values of AEX based on both i^^^ and i^g^ are as 

follows: 
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Line of indiscernibility: 

\ — P — —— —******-_—-— 

21.96% 25.08% 

State of AEX based on AEX based on 

Nature e^^ imin = 21.96% i^ax = 25.08! 

Ni 0% 0% 11.05 -224.80 
Np 2% 1% 130.49 -107.59 
No 2% -1% 0.00 -235.69 
N^ 1% 3% 240.19 0.00 

Since the variance will always be positive by definition, the above 

equations dictate that the value of is negative if i^^j^ is positive; 

and the value of is positive if i^i^ Is negative. The value of 

is positive if i^g^ positive; and the value of is negative if i^^^ 

is negative. 

The induction above reveals two difficulties in searching for the 

possible range of the angular coefficients for each pair of alternatives. 

First, a positive angular coefficient is meaningless, as discussed in 

Section A. Therefore, the possible value of the angular coefficient must 

be limited to a negative value or zero in all cases. 

Second, a negative rate of return is meaningless in economic decision 

process. Therefore, the values for the rates of return must be limited to 

positive values or zero. 

Since is always positive for positive i^^^, zero will always 

substitute for positive values of Hence, there is no need to 

calculate a^^^ in searching for the possible range of angular 

coefficients. From this point only will be considered. 

The next step is to find the maximum from among the values for 



www.manaraa.com

114 

each pair of alternatives. The range of possible angular coefficients for 

the final decision line is then defined by the the value of max(^j^^) and 

zero. If the decision maker is very conservative, the lower limit of this 

possible range of £ values, i.e., the max(^^^), will be chosen as the 

angular coefficient to calculate the final decision line. 

In summary, the necessary steps in the simplified approach are 

restated as follows : 

1. For each state of nature, solve for the rates of return comparing 
each alternative with present conditions and with one another. 

2. For all pairs of alternatives, i.e., alternatives compared with 
present conditions and with one another, draw a line of 
indiscernibility between the lowest rate of return and the 
highest rate of return representing the "best case" and "worst 
case" scenarios. Let the lowest rate of return ("worst case" 
scenario) be defined as i^^^, and the highest rate of return 
("best case" scenario) as i^^x* 

3. Calculate the lower limits of possible angular coefficients for 
all pairs of alternatives from the lines of indiscernibility 
according to the following equations : 

- EXP[AEX]j 

4. For all pairs of alternatives, take the largest (least negative) 

value of min* range for possible final a^ values is then 
defined by dne maximum of (which is a negative value) and 
zero. The max(^^^) value is the most conservative angular 
coefficient within the possible range; as the angular 
coefficients within the range becomes less negative, decisions 
become less conservative. 

5. Calculate the final decision line of utility index ROR based on 
the angular coefficient selected using the following equation in 
a trial and error routine. 

Ij = 0 = EXP[AEX]j + a * rj * VAR[AEX]j 

where 1:= = index of utility for the pair of alternatives j 
a = final selected angular coefficient 
Tj = rate of return for the pair of alternatives j 
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6. Examine the final decision line of utility index ROR. If the 
pair of alternatives from which the final a^^ value Is selected 
is included on the final decision line, the decision procedure is 
completed. However, if the pair of alternatives from which the 
final value is selected is not included on the final 
decision line, the final a^^ value must be modified. Choose the 
next least negative value"^ £min Che revised final angular 
coefficient. Steps 5 and 6 are repeated as many times as 
necessary. 

The same numerical example used for Constant's approach will be 

presented again to illustrate the simplified approach. The necessary 

steps are as follows: 

1. For each state of nature, solve for the rates of return comparing 
each alternative with present conditions and with one another. 

For state of nature Np the rates of return are as follows: 

Internal ROR over 
P A B C 

Alternative A 22.11% 
B 21.15% 18.72% 
C 20.42% 17.57% 15.24% 
D 19.06% 15.94% 14.05% 13.46% 

For state of nature N2, the rates of return are as follows: 

Internal ROR over 
a b c  

Alternative A 23.68% 
B 23.57% 23.30% 
C 21.63% 18.12% 5.91% 
D 21.08% 18.45% 15.03% 18.93% 

For state of nature Ng, the rates of return are as follows: 

Internal ROR over 
A B 

Alternative A 21.96% 
B 23.57% 27.33% 
C 19.22% 14.43% -48.22% 
D 20.38% 18.81% 12.40% 24.61% 

For state of nature N^, the rates of return are as follows; 
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Internal ROR over 
A B 

Alternative A 25.08% 
B 22.36% 14.99% 
C 24.04% 22.29% 34.26% 
D 20.99% 16.71% 17.79% 7.11% 

2. For all pairs of alternatives, i.e., alternative compared with 
present conditions and with one another, draw a line of 
indiscernibility between the highest rate of return and the 
lowest rate of return representing the "best case" and "worst 
case" scenarios, respectively. Let the highest rate of return be 
defined as i^^^, and the lowest rate of return as 1^1^' The 
lines of indiscernibility for all pairs of alternatives on the 
decision line are as follows: 

^ _ p .) — —— ******—— 

21.96% 25.08% 

g _ p ^ ***** 

21.15% 23.57% 

g — ^ +— — —— — _************************——— 

14.99% 27.33% 

Q — p ———— — — — — — «_********** — — — 

19.22% 24.04% 

C — A H ————— — — *****************———— — 
14.43% 22.29% 

c — g ************************************************************** 

0 34.26% 

19.06% 21.08% 

q — ^ — — — — — ___****** — — — — 

15.94% 18.81% 

Q — g H ************—— — — 

12.40% 17.99% 

J)  — Q  ^  — * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *— — 

7.11% 24.61% 

3. Calculate the lower limits of possible angular coefficients from 
the lines of indiscernibility according to Eq. 5-4: 
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- EXP[AEX]j 

(lj,mln)(var[aex]j) 

For alternative A compared with present conditions, the value of 

^min found to be 21.96%. The following payoffs (AEX in this 
case) can be calculated based on 21.96%: 

y- ®F1 
NG: ®F1 
N3: ®F1 
N4: ®F1 

= 0%, ®F2 = 0%, 

= 2%, ®F2 = 1%, 
= 2%, ®F2 =-1%, 
= 1%, ®F2 

= 3%, 

AEX^ = 11.05 

AEXg = 130.49 

AEXo = 0.00 

3%, AEX4 = 240.19 

By Bayes-Laplace assumption, Pj^ = ?£ = P3 = P4 = 25%, the 
expected value and variance were as follows : 

EXP[AEX] =95.43 

VAR[AEX] = 9,602.47 

The value of for alternative A over P is then calculated as 

follows: 

-EXP[AEX] -95.43 

(i^in)(VAR[AEX]) (21.96%)(9,602.47) 
imin -0.045260 

The other values of from the other lines of indiscernibility 
are calculated in the same manner and listed as follows : 

of alternatives 
êsiîî-!!-!!!-

A - P -0.045260 
B - P -0.066416 
B - A -0.058306 
G - P -0.027929** 
C - A -0.070396 
C - B +0.001713 
D - P -0.071067 
D - A -0.092246 
D — B -0.114836 
D - C -0.093491 

4. From among all pairs of alternatives, choose the largest value 
that is negative (i.e., least negative) of ̂ ,min» ~0«027929 (C 
over P). This value is the most conservative'angular coefficient 
within the possible range from -0.027929 to zero. 

5. Calculate the final decision line of utility index ROR based on 
the angular coefficient selected, i.e., -0.027929. 
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0 14.20% 17.86% 22.43% 

6. Since the final decision line does not include the pair of 
alternatives C over P, from which the final angular coefficient 
is selected, the final angular coefficient must be modified. 
From among the remaining pairs of alternatives, choose the next 
least negative value of a^ ~0»045260 (A over P). 

5a. Calculate the final decision line based on the angular 
coefficient selected, i.e., -0.045260. 

D A P 
H 4 + 

0 16.71% 21.96% 

6a. Since the final decision line does include the pair of 
alternatives A over P, from which the final angular coefficient 
is selected, the final decision line is completed. This final 
decision line is identical to that obtained in Constant's 
approach. 

E. Application of Simplified Approach to the Context of Risk 

The simplified approach is readily applied to the context of risk 

with a minor modification. The modification is that the calculation of 

the expected value and variance is according to the exact probabilities 

predicted by the decision maker, instead of Bayes-Laplace assumption. 

Assuming that the decision maker predicts a probability of 40% for state 

of nature N^, 30% for N2, 20% for Ng, and 10% for N^, the simplified 

approach for the same numerical example can be applied as follows: 

1-2. Same as Steps I to 2 in Section D. 

3. Calculate the lower limits of possible angular coefficients from 
the lines of indiscernibility according to Eq. 5-4: 

- EXP[AEX]j 

(ij,min)(VAR[AEX]j) 
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For alternative A compared with present conditions, the value of 
i^in is found to be 21.96%. The following payoffs (AEX in this 
case) can be calculated based on 21.96%: 

Ni: ®F1 = 0%, e 
Ng: ®F1 = 2%, e-
No: ®F1 = 2%, e 
N4: ®F1 — 1%, e 

P2 =• 0%, AEX, = 11.05 

P2 = 1%, AEX? = 130.49 
P2 =-1%, AEX, = 0.00 
P2 = 3%, AEX^ = 240.19 

Since Pj^ = 40%; P2 = 30%; P3 = 20%; and P^ = 10%, the expected 
value and variance were calculated as follows; 

EXP[AEX] = (.40)11.05+(.30)130.49+(.20)0.00+(.10)240.19 
= 67.59 

VAR[AEX] = (.40)(11.05)2+(.30)(130.49)2+(.20)(0.00)2 
+(.10X240.19)2 - (67.59)2 

= 6,358.15 

Î of £ 
follows: 

The value of alternative A over P is then calculated as 

-EXP[AEX] -67.59 

(lmin)(VAR[AEX]) (21.96%)(6,358.15) 
£min -0.048411 

The other values of from the other lines of indiscernibility 
are calculated in the same manner and listed as follows: 

Pair of alternatives £min values 

A - P -0.048411 
B - P -0.045292 
B - A -0.086047 
C - P -0.039390** 
C - A -0.110434 
C - B + 
D - P -0.045854 
D - A -0.073886 
D - B -0.170803 
D - C -0.146645 

From among all pairs of alternatives, choose the least negative 

value of min» "0*039390 (C over P). This value is the most 
conservative angular coefficient within the possible range from 
-0.039390 to zero. 

Calculate the final decision line based on the angular 
coefficient selected, i.e., -0.039390. 
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—~~—i— 

13.91% 18.12% 22.12% 

6. Since the final decision line does not include the pair of 
alternatives C over P, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 

alternatives, choose the next least negative value of min» 
-0.045292 (B over P). 

5a. Calculate the final decision line based on the angular 
coefficient selected, i.e., -0.045292. 

D  B A P  
H H H H 

0 13.83% 17.67% 22.01% 

6a. Since the final decision line does not include the pair of 
alternatives B over P, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 

alternatives, choose the next least negative value of min' 
-0.045854 (D over P). ' 

5b. Calculate the final decision line based on the angular 
coefficient selected, i.e., -0.045854. 

D  B A P  
H — — ————— —— ——H—— —'——H ————H— —— 

0 13.83% 17.63% 22.00% 

6b. Since the final decision line does not include the pair of 
alternatives D over P, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 

alternatives, choose the next least negative value of min» 
-0.048411 (A over P). 

5c. Calculate the final decision line based on the angular 
coefficient selected, i.e., -0.048411. 

D  B A P  
4— '—— — —— —— h— ——h—— — h— —— 

0 13.80% 17.44% 21.96% 

6c. Since the final decision line does include the pair of 
alternatives A over P, the final decision line is completed. 
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vi. decision procedure for weak ranking in the context of 

incomplete knowledge 

For weak ranking in the context of incomplete knowledge. Cannon and 

Kmietowicz [1974] have shown that the extreme expected value of the 

possible payoff values can be found by using the partial average approach. 

Kmietowicz and Pearman [1976] concluded that the extreme variances of the 

possible payoff values can also be found by using the partial average 

approach. In other words, the extreme expected value and the extreme 

variances of the payoff values must occur at one of corner boundary 

points. However, Agunwamba [1980] pointed out a special case which was 

ignored by Kmietowicz and Pearman. When no more than two distinct payoff 

values exist for n possible states of nature, it is possible that the 

maximum variance occurs inside the feasible region. 

Kmietowicz and Pearman [1981] then incorporated the expected value 

and variance into a single index, the index of utility, by introducing a 

coefficient of risk aversion. Under weak ranking, they showed that the 

maximum and minimum index of utility (extreme indexes) can usually be 

located at one of the corner boundary points. When no more than two 

distinct payoff values exist for n possible states of nature, the minimum 

index of utility could be located inside the feasible region, and can be 

found by solving a set of linear equations. 

Although the coefficient of risk aversion was assumed to be known by 

Kmietowicz and Pearman [1981], a methodology for determining the 

appropriate value of the coefficient of risk aversion was not provided by 

these authors. Because of the unknown value of the coefficient of risk 
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aversion, the process of applying the extreme index of utility when 

comparing mutually exclusive alternatives is rendered ineffective. 

Constant [1983] developed a decision procedure to form an optimal 

final decision line in the context of uncertainty (assuming equal 

probabilities) for one set of mutually exclusive alternatives. In the 

decision procedure, Constant related the coefficient of risk aversion to 

the product of the minimum attractive rate of return and an angular 

coefficient. The possible ranges of the angular coefficient for each pair 

of alternatives was found by using the indiscernible region of the rate of 

return under various possible states of nature. A common range of the 

angular coefficient was identified to represent the assembly of all 

possible values of the angular coefficient from which a decision maker can 

choose. The minimum angular coefficient was suggested by Constant to form 

the final decision line. 

In Chapter V, the decision procedure developed by Constant was 

simplified. The resulting simplified decision procedure has been applied 

to both the context of uncertainty and context of risk by this author. 

One of the objectives of this research is to develop a decision 

procedure to form the final decision line in the context of incomplete 

knowledge for weak ranking. Several modifications must be made for the 

simplified decision procedure developed in Chapter V before it can be 

applied to the context of incomplete knowledge. 

Section A applies the proof of Kmietowicz and Pearman [1981] which 

states that a necessary and sufficient condition for a relative minimum 

index of utility to exist inside the feasible region is that there are at 
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most two distinct payoff values for n states of nature (n ̂  3). 

Therefore, the global minimum must occur at the corner boundary points if 

there are more than two distinct payoff values. 

If there are two distinct payoff values, multiple relative minimums 

of equal value can exist. The necessary conditions for the existence of 

at least one relative minimum inside the feasible region are developed. 

If the necessary conditions are not met, the global minimum must occur at 

one of the corner boundary points. 

If the necessary conditions are met, it is possible that a relative 

minimum(s) exists inside the feasible region. The multiple relative 

minimums can be located by a pair of linear equations. Any solution to 

the pair of linear equations results in a relative minimum. The multiple 

relative minimums have a common value of the index of utility which can be 

calculated directly. However, only the relative minimum(s) inside the 

feasible region defines the global minimum(s). In case that none of the 

multiple relative minimums is located inside the feasible region, the 

global minimum must occur at one of the corner boundary points. 

Section B examines the fact that a range of rates of return on index 

of utility (utility index ROR) exists for a fixed angular coefficient. 

For a fixed angular coefficient, the largest utility index ROR is the 

interest rate at which the maximum index of utility is equal to zero. The 

smallest utility index ROR for a fixed angular coefficient Is the interest 

rate at which the minimum index of utility also equals zero. If the 

maximum and minimum index of utility can be identified by comparing the 

values of the index of utility at various corner boundary points, then the 
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largest and smallest utility index ROR can also be identified by comparing 

the utility index ROR at various corner boundary points. 

In Section C, the method to identify the possible ranges of the 

angular coefficient for each pair of alternatives is studied. The minimum 

angular coefficient, a^^„, is the angular coefficient at which the 

smallest utility index ROR is equal to the minimum rate of return on the 

line of indiscernibility. After the possible ranges for all pairs of 

alternatives are found, the common range of the angular coefficient can be 

identified to represent the assembly of all possible values of the angular 

coefficient from which a decision maker can choose. The minimum angular 

coefficient of the common range (most conservative) was suggested to form 

the final decision line. If the pair of alternatives on which the final 

angular coefficient is based is not included on the final decision line, 

adjustment of the selected final angular coefficient is necessary. 

By including the necessary modifications. Section D summarizes the 

decision procedure under weak ranking in the context of incomplete 

knowledge with a numerical example. 

A. Extreme Indexes of Utility under Weak Ranking 

Under the constraints of weak ranking, numerous sets of probability 

combinations can be formed satisfying the preordering requirements of 

probability. Each set of probability combinations yields a unique 

expected mean and variance of payoff values from possible states of 

nature. With a fixed value of coefficient of risk aversion, each set of 
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probability combinations also yields a unique Index of utility. 

Kmletowicz and Pearman [1981] have shown that the extreme values (maximum 

and minimum) of the index of utility for a fixed value of coefficient of 

risk aversion can be found at one of the corner boundary points of the 

feasible region if there are more than two distinct payoff values for n (n 

>3) states of nature. The global minimum index of utility may occur 

Inside the feasible region if there are one or two payoff values for n 

states of nature. If there is only one payoff value, there is always only 

one value of the index of utility which equals the payoff value since the 

variance is always zero. 

Even if there are only two distinct payoff values for n (n ̂  3) 

states of nature, the global maximum index index of utility can still be 

identified by comparing the values of the index of utility at the corner 

boundary points. However, the relative minimum index can be located by 

solving the following two linear equations [Kmletowicz and Pearman 1981]. 

n 1 + b (Xj. + Xj) 
2 Y. Q. = ———————————————— (Eq. 6—1) 

1=1 2b 

n 
I 1 Q, = 1 (Eq. 6-2) 

1=1 

Qi ̂  0 (for 1=1,2, ..., n) (Eq. 6-3) 

where: n = number of possible states of nature 

"i -1 
= sum of payoff values up to state of nature 1 

qi = pi - pi+i 
= difference in probabilities for two consecutive states 

of nature 
b = coefficient of risk aversion 
Xj^ = payoff value of state of nature 1 
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Xj. = the second distinct payoff value which first occurs for 
state of nature t 

X. = payoff value of state of nature j, Xj=Xj^ or Xj=X,. 
= probability of state of nature i 

By subtracting Xj times Eq. 6-2 from Eq. 6-1, Eq. 6-1 becomes, 

n n 

I yiqi - xjc I iqi) = [b(xc+xi)+l]/2b - xj 
i=l i=l 

Let a^ be defined as the number of occurrences that Xj = X^ for j = 1, 2, 

i. Then could be rewritten as = aj_ Xj + (i-a^) X^. 

n n 

I [aiXi+(i-ai)Xt]Qi - I iX^Q^ = [b(x^+xp+l]/2b - X^ 
i=l i=l 

n 
I {[aj^Xi+(i-a^)X^]-iXj} = (bXj.+bXj+l-2bXj]/2b 

n 

I {(i-ai)xt-(i-ai)xi} = [b(xt-xi)+l]/2b 
i=l 

n 
I (i-a^xx^-x^qi = [b(xc-xi)+l]/2b 

n 

I (i-ai)(Xt-Xi)Qi = (Xt-Xi)/2 + l/2b 

n 
I (i-ai)Qi = 1/2 + l/2b(X^-Xi) (since Xj ̂  X^) 

i=l 

t-1 n 

i (l-ai)qi + i (i-a^)q^ = 1/2 + l/zbcx^-xi) 
i=l i=t 

n 
J (i-a^)Q^ = 1/2 + l/2b(Xj.-X]^) (since a^ = i for i = 1,.., t-1) 

i=t 

Eq. 6-1 is replaced by Eq. 6-4. 
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n 
I (i-ai)Qi = 1/2 + l/2b(Xj.-Xi) (Eq. 6-4) 

i=t 

By subtracting Eq. 6-4 from Eq. 6-2, Eq. 6-2 becomes, 

n n 
% iql - l (i-ai)qi = 1 - 1/2 - l/2b(xt-xp 

i=l i=t 

^ï^iQi + î iQi - I iQi + I aiQi = 1/2 - l/2b(Xt-Xi) 
i=l i=t i=t i=t 

t-1 n 
i iql + i = 1/2 - l/2b(xt-xi) 

1=1 i=t 

Since a^ = i for i = 1, 2, ..., t-1, Eq. 6-2 is replaced by Eq. 6-5. 

n 
l a^Qi = 1/2 - l/2b(Xj.-Xi) (Eq. 6-5) 

i=l 

Eq. 6-3 remains as follows, 

Qi 0 (for i = 1, 2, ..., n) (Eq. 6-3) 

If there are two distinct payoff values for n states of nature, any 

solution to Eq. 6-4 and Eq, 6-5 results in a relative minimum index of 

utility. Since there are multiple solutions for Eqs. 6-4 and 6-5, 

multiple relative minimum indexes of utility can be obtained from Eqs. 6-4 

and 6-5. However, with the constraints of Eq. 6-3, the multiple relative 

minimum indexes of utility may not be located inside the feasible region. 

It is important to be able to identify the conditions for which at 

least one relative minimum index of utility exists inside the feasible 

region. Since ^ 0, a^ > 0, and (i-a^) 2 0 for i = 1, 2, ..., n, the 

left hand side of both Eqs. 6-4 and 6-5 is greater than or equal to zero. 

The corresponding right hand side of these two equations must also be 
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greater than or equal to zero. Therefore, 1/2 + l/2b(X^-X^) ̂  0 and 1/2 ~ 

l/2b(Xj.-X2) 2 0 are necessary to have at least one relative minimum index 

of utility inside the feasible region. The necessary conditions can be 

rewritten as 

- 1/2 < l/2b(X^-Xi) < 1/2 (Eq. 6-6) 

Despite the fact that the necessary conditions, Eq. 6-6, are met, it 

is still possible that none of the multiple relative minimum index of 

utility exists Inside the feasible region. In other words, the necessary 

conditions indicate that there is no relative minimum index of utility 

inside the feasible region if they are not met. But the fulfillment of 

the necessary conditions does not guarantee at least one relative minimum 

index of utility inside the feasible region. 

A basic solution to Eqs. 6-4 and 6-5 has at most two unknowns which 

are not equal to zero. There are (n)(n-l)/2 basic solutions to Eqs. 6-4 

and 6-5. Any linear combinations of these basic solutions is also a 

solution to Eqs. 6-4 and 6-5. Therefore, unless all the basic solutions 

are outside the feasible region, at least one relative minimum index of 

utility occurs Inside the feasible region. 

Although multiple relative minimum Indexes of utility can be located 

by solving Eq. 6-4 and Eq. 6-5, they result in a common value. Therefore, 

any solution from Eqs. 6-4 and 6-5, is sufficient in finding the common 

value of the multiple relative minimum indexes of utility. 

Since there are two equations and n (n ̂  3) unknowns, a basic 

solution to Eqs. 6-4 and 6-5 has at most two unknowns which are not equal 

to zero. It is then reasonable to assume that only and are not 
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equal to zero while setting all other unknowns equal to zero. With the 

above assumption, Eqs. 6-4, 6-5, and 6-3 can be rewritten as follows. 

Since the payoff values for the states of nature from one to t-1 are all 

equal to Xj according to the definition of t, then a^ = t-1. Therefore, 

The expressions for Qj^ and Qj. in Eq. 6-7 and Eq. 6-8 represent one of the 

basic solutions. This solution is feasible if both Qj^ and Qj. are 

positive. The solution is infeasible, (in other words, it is outside the 

feasible region) if either or Qj. is negative. Whether or not the 

resulting values of and Q^. are feasible or infeasible, the common value 

of the minimum index of utility can be evaluated from these values of 

and Q^. The probabilities for all the states of nature can be calculated 

once the values of and are known. 

(t-a^)q^ = 1/2 + l/2b(xt-xp 

ajqi + a^qt = 1/2 - l/2b(xj.-xi) 

ql > 0, qt > 0 

qt = 1/2 + l/2b(xt-xp 

ql = 1/2 - l/2b(xt-xi) - (t-l)qt 

= 1/2 - l/2b(Xt-Xp - (t-l)/2 - (t-l)/2b(Xt-xp 

= 1 - t/2 - t/2b(X^-X^) 

(Eq. 6-7) 

(Eq. 6-8) 

Pn = Qn = 0 

Pn-1 = Pn + Qn-1 = 0 

1 
= 0 + — + 

2 

1 
pt = pt+1 + qt 

2b (X(. - Xj) 

1 1 
pt-1 = pt + qt-1 - + + 0 

2 2b (Xj. - xp 
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p z  =  p 3  +  q 2  

1 1 
— + + 0 

2 2b (X^ - Xj) 

p i  =  p 2  +  q i  
2b (X^ - X^) 2b (X^ - Xj) 

= 1 -
t-1 

2 2b (X^ - Xj) 

Let P be the sum of the probabilities associated with all the states of 

nature having X^ as payoff. Then, 

2 = 1 - (since Xj^ = X^ for i = 1, 2, t-1) 

= 1 -
1 1 

2 2b (X^ - Xj) 

1 1 

2 2b (Xj. - Xj) 

The index of utility can be rewritten in terms of 2» 

I =• EXP + b * VAR 

n n . n 

i=> 

=• PX 

= PX 

= PX 

= PX 

= PX 

= PX 

Substitute 

I Pi * Xi + b { % ?! * - [ I ?! * } 
i=l  i=l 

+ (1-P)X^ + b { PXj^ + (1-P)X^2 - [ PXi + (1-P)X(. } 

+ (1-P)X^ + b { PXi^+(l-P)X^^ - P2xi2-2P(1-P)xix^-(1-P)2x^ 

+ (l-P)X^ + b { PXj2(i-p) + (1-P)X|.2[1-(1_P)] - 2P(l-P)XiX 

+ (l-P)X^ + b { P(l-P)Xi^ + P(1-P)X,.2 - 2P(l-P)XiX^ } 

+ (l-P)X^ + bP(l-P) { X^^ + _ 2XiXt } 

+ (l-P)Xt + bP(l-P)(X^-Xi)^ 

he expression for P into the equation. 
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1 1  1 1  1 1  , 
!=»[— — ——————]Xi +[— +  ————————]Xf +b[— — — ————————X^) 

2 2b(Xj.-Xi) 2 2b(Xj.-Xi) 4 4b2(Xt-Xj)2 

Xi+Xt X^-Xi b(Xt-Xi)2 b 

2 2b(Xj.-Xi) 4 4b2 

xj+xj. 1 b(xt-xi)2 1 

2 2b 4 4b 

2b(xi+xt) + b2(xc-xi)2 +2-1 

4b 

b2(xc-xi)2 + 2b(xj.-xi) + 1 + 4bxi 

4b 

[b(xt-xi)+l]2 
= ———————————— + Xi (Ecj. 6 —9) 

4b 

If there are only two distinct payoff values, Eq. 6-9 is the common 

value of the multiple relative minimum indexes of utility. Notice that 

this common value becomes the global minimum index of utility only if at 

least one relative minimum exists inside the feasible region. 

Thus it may be concluded that the assessment of the extreme indexes 

of utility under weak ranking must proceed in the following way, 

a. Global maximum At least one global maximum occurs at the 

corner boundary points despite the number of distinct payoff 

values. 

b. Global minimum 

i. If there are more than two distinct payoff values, the 

global minimum index of utility must occur at the corner 

boundary points. 
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il. If there are only two distinct payoff values, it is possible 

that relative minimums exist Inside the feasible region. 

Check the necessary conditions using Eq. 6-6. If the 

necessary conditions are not met, the global minimum will 

still occur at the corner boundary points. If the necessary 

conditions are met, Eqs. 6-4, 6-5, and 6-3 are served to 

locate the relative minimums. Check all basic solutions to 

Eqs. 6-4 and 6-5. 

Case 1: If at least one basic solution of Eqs. 6-4 and 

6-5 is feasible, the global minimum index of utility 

can be calculated by Eq. 6-9. 

Case 2: If all the basic solutions to Eqs. 6-4 and 6-5 

are not feasible, the global minimum index of utility 

must occur at the corner boundary points. 

The same numerical example used in Chapter V will be adopted again to 

demonstrate the application of the decision procedure in the context of 

incomplete knowledge. 

For alternative A compared to present conditions, the four payoff 
values (AEX) for the various states of nature using a rate of return 

of 20% were as follows: 

N,: ep, = 0%, ep2 = 0%, AEX^ = 156.20 

Nn' ®F1 ~ 2%, ®F2 ~ 1%, AEX2 — 277.08 
No: epi = 2%, ep2 =-1%, AEXg = 145.04 
N^: epj = 1%, ep2 = 3%, AEX^ = 388.14 

Since all four payoff values are different from one another, the 
extreme values of the index of utility can be found at the corner 
boundary points. Assuming the angular coefficient is known to be 
-0.05 (or equivalently the coefficient of risk aversion is -0.01), 
the values of the mean, variance, and index of utility at each of the 
corner boundary points are listed as follows. 
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Corner Probability for 
boundary state of nature Index of 
point 1 2 3 4 Mean Variance utility 

1 1.0 - - - 156.20 0 156.20 
2 .50 .50 - - 216.64 3652.79 180.11** 
3 .33 .33 .33 - 192.78 3574.36 157.03 
4 .25 .25 .25 .25 241.62 9837.09 143.25* 

Since the coefficient of risk aversion is defined as the product of 

the angular coefficient and the minimum attractive rate of return, 

different values for the coefficient of risk aversion result at different 

interest rates by keeping the angular coefficient at the same value of 

-0.05. For each value of the coefficient of risk aversion, both the 

maximum(**) and minimum(*) index of utility can be identified by the 

procedure described above. Figure 2 shows the extreme values of the index 

of utility for a spectrum of interest rates with an angular coefficient of 

-0.05. Since there are more than two distinct payoff values at each of 

the interest rates, the maximum and minimum index of utility always occur 

at the corner boundary points for the numerical example. 

B. Maximum and Minimum Utility Index Rates of Return 

In the context of uncertainty. Constant [1983] defined the utility 

index ROR at an angular coefficient as the rate of return that causes the 

index of utility to equal zero. Since there is only one value of index of 

utility in respect to one value of rate of return (or one value of 

coefficient of risk aversion) for a fixed angular coefficient in the 
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Index 
of 
Utility 

500" 

maximum 

200" 

100 4. 

minimum 

-100 --
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Interest rate 

Figure 2. Extreme values of the index of utility under weak ranking 
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context of uncertainty, there is only one rate of return that will cause 

the index of utility to equal zero. In other words, only one utility 

index ROR exists in the context of uncertainty for each value of angular 

coefficient. 

For weak ranking in the context of incomplete knowledge, there is a 

range of values for the index of utility in respect to one value of rate 

of return at a fixed angular coefficient as discussed in Section A. The 

approach to search for the maximum and minimum index of utility in this 

range was presented in Section A. Since there is a range of values for 

the index of utility in respect to one value of rate of return at a fixed 

angular coefficient, there must be multiple rates of return at which the 

index of utility of zero value is included in the possible range of index 

values. In other words, there must be a range of utility index ROR for a 

fixed angular coefficient which may cause the index of utility to equal 

zero at certain probability combinations. 

Let the upper limit of the range of utility index ROR be defined as 

the maximum utility index ROR, and the lower limit as the minimum utility 

index ROR. For a fixed angular coefficient, the maximum utility index ROR 

is the interest rate at which the maximum index of utility equals zero. 

The minimum utility index ROR for a fixed angular coefficient is the 

interest rate at which the minimum index of utility equals zero. 

At least one global maximum index of utility occurs at the corner 

boundary points despite the number of distinct payoff values as discussed 

in Section A. Therefore, the maximum utility index ROR must occur at one 
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of the corner boundary points. The value of the maximum utility index ROR 

can be found by the trial and error method. At each trial and error 

routine, the values of index of utility for the corner boundary points are 

calculated at the trial rate of return. The trial and error routine is 

repeated until a utility index ROR is found at which the maximum index of 

utility is of zero value. 

However, it is possible that the global minimum utility index ROR 

occurs inside the feasible region. A trial and error routine is still 

used to search for the value of the minimum utility index ROR. In each 

trial and error routine, the payoff values for the various states of 

nature are calculated according to the trial rate of return. 

If there are more than two distinct payoff values, the minimum index 

of utility must occur at the corner boundary points. In this case, it is 

only necessary to calculate the values of index of utility at the corner 

boundary points in order to determine the global minimum index of utility. 

If there are only two distinct payoff values, it is possible that a 

relative minimum index of utility exists inside the feasible region. The 

procedure is to check the necessary conditions: - 1/2 ̂  l/ZbCX^-X^) ̂  1/2. 

If the necessary conditions are not met, the global minimum index of 

utility must occur at the corner boundary points. 

If the necessary conditions are met, Eqs. 6-4, 6-5, and 6-3 are 

served to locate the relative minimums. Check all basic solutions to Eqs. 

6-4 and 6-5. If at least one basic solution of Eqs. 6-4 and 6-5 is 

feasible, the global minimum index of utility can be calculated by Eq. 
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6-9. If all the basic solutions to Eqs. 6-4 and 6-5 are not feasible, the 

global minimum index of utility must occur at the corner boundary points. 

The trial and error routine is repeated until a utility index ROR is 

found at which the minimum index of utility is of zero value. 

In the numerical example for alternative A compared to present 

conditions, the maximum and minimum utility index ROR at an angular 

coefficient of -0.05 are found by trial and error routine to be 22.37% and 

21.83%, respectively. 

At 22.37%, the payoff values are as follows, 

AEX^ = -19.88 

AEXg = 99.26 

AEXo = -30.91 

AEX4 = 208.67 

The values of the mean, variance and index of utility at each of the 
corner boundary points are listed as follows. 

Corner Probability for 
boundary state of nature Index of 
point 1 2 3 4 Mean Variance utility 

1 1.0 - - - -19.88 0 -19.88 
2 .50 .50 - - 39.69 3548.48 0.00** 

3 .33 .33 .33 - 16.16 3473.30 -22.69 
4 .25 .25 .25 .25 64.29 9554.01 -42.58 

Notice that the maximum index of utility(**) which occurs at corner 
boundary point 2 is of zero value at the trial rate of return of 
22.37% for an angular coefficient of -0.05. At 21.83%, the payoff 
values are as follows, 

AEX^ = 20.53 
AEXn = 140.06 
AEXo = 9.47 

AEX4 = 249.84 

Since there are more than two payoff values, the minimum index of 
utility must occur at the corner boundary points. The values of the 
mean, variance, and index of utility at each of the corner boundary 
points are listed as follows. 
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Corner 
boundary 
point 

Probability for 
state of nature Index of 

Mean Variance utility 

1 
2 
3 
4 

1 2 3 4 
1 . 0  -  -  -
.50 .50 -
.33 .33 .33 -
.25 .25 .25 .25 

20.53 0 20.53 
80.30 3571.83 41.31 
56.69 3495.93 18.53 
104.98 9617.41 0.00* 

Notice that the minimum index of utilityC*) which occurs at corner 
boundary point 4 is of zero value at the trial rate of return of 

21.83% for an angular coefficient of -0.05. 

C. Determination of Final Angular Coefficient 

In the context of incomplete knowledge, there is a range of utility 

index ROR for each value of the angular coefficient. The approach to 

identify the maximum and minimum utility index ROR was presented in 

Section B. This section will focus on the selection of the angular 

coefficient which will form the final decision line. 

Before determining the value of the final angular coefficient, the 

possible angular coefficients should be evaluated for each pair of 

alternatives. For each pair of alternatives, i.e., alternatives compared 

with present conditions or compared with one another, a line of 

indiscernibility is drawn between the highest rate of return and the 

lowest rate of return representing the "best" and "worst" states of 

nature. Since a rate of return higher than the highest or lower than the 

lowest is Impossible, a reasonable utility index ROR must fall within the 

line of indiscernibility. Therefore, those angular coefficients, which 

could cause the utility index ROR to be greater than the highest rate of 

return from the "best" state of nature or less than the lowest rate of 

return from the "worst" state of nature, need not to be considered any 
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further. Those angular coefficients, which could cause the utility index 

ROR to fall within the line of indiscernibility, are the candidates for 

the final angular coefficient. 

The minimum angular coefficient, Che lower limit of the 

possible angular coefficients at which the utility index ROR are greater 

than or equal to the smallest rate of return on the line of 

indiscernibility. It is not necessary to consider an angular coefficient 

less than because any angular coefficient less than could cause 

a utility index ROR to be lower than the lowest rate of return possible. 

The maximum angular coefficient, is the upper limit of the 

possible angular coefficients at which the utility index ROR are less than 

or equal to the largest rate of return on the line of indiscernibility. 

Theoretically, those angular coefficients between and are all 

possible for final selection. However, since the value of a^^x always 

positive, causing contradictory conclusions as discussed in Chapter V, the 

possible range for the angular coefficient is from to zero. 

Although the value of the minimum angular coefficient for a certain 

pair of alternatives can be found by the trial and error method as in 

Constant's decision approach, a more straightforward approach to locate 

the value of the minimum angular coefficient is developed. At the minimum 

angular coefficient, the minimum utility index ROR is equal to the 

smallest rate of return on the line of indiscernibility, 1^^^* And the 

minimum utility index ROR for a fixed angular coefficient is the interest 

rate at which the minimum index of utility equals zero. With the minimum 

utility index ROR known to be equal to ig^^» the angular coefficient which 
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causes the minimum index of utility to equal zero can be found reversely. 

The payoff values for all possible states of nature are first 

calculated according to there are more than two distinct payoff 

values, the minimum index of utility must occur at one of the corner 

boundary points. The minimum angular coefficient must also occur at one 

of the corner boundary points. The possible minimum angular coefficient 

for each corner boundary point can be obtained by the following equation, 

- EXP[AEX]j 

(ij.min)(var[aex]j) 
—j juiin 

where : j = a certain pair of alternatives 

min ~ lowGr limit of angular coefficient 
i.'jjjin = lowest rate of return on the line of 
' indiscernibility 

EXP[AEX]j = expected value of payoffs based on 
VAR[AEX]j = variance of payoffs based on ij ' 

The procedure is to choose the largest value from the values of 

all corner boundary points as the minimum angular coefficient for this 

pair of alternatives. The largest is selected because it is the 

smallest angular coefficient common to all corner boundary points. 

If there are only two distinct payoff values, it is possible that a 

relative minimum index of utility exists inside the feasible region. 

Since the common value of the multiple minimum indexes of utility can be 

calculated by Eq. 6-9, the value of the coefficient of risk aversion can 

be obtained by setting Eq. 6-9 equal to zero. 

[b(xt-xi)+l]2 

4b 

b2(xt-xi)2 + 2b(x^-xj) + 1 + 4bxj^ 

4b 
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b2(xt-xi)2 + zbcx^+xj) +1=0 

(X^-Xp^ b2 + 2(Xt+Xi) b + 1 = 0 

With the payoff values (X^ and Xj.) known, the coefficient of risk aversion 

can be calculated according to the following equation, 

-2(xt+xi) + / [2(x^+xI)]2 - 4*(xt-xi)2*l 

2*(xt-xi)2 

-2(xt+xi) + / 4xt^ + 4x^2 + sx^xi - 4x^2 - 4x^2 + ax^xj 

2(xt-xi)2 

-2(x^+xp + / lôx^xj 

2(xt-xp2 

-2(x,+xi) + 4 /-xpïj-

2(xt-xi)2 

-(xf+x,) + 2 / xrx, 
^ ^ -  ±_i__ (Eq. 6-11) 

(x^-xp^ 

Notice that there are two values of the coefficient of risk aversion 

obtained from Eq. 6-11. However, only the coefficient of risk aversion 

that satisfies all of the following tests should be used to determine the 

minimum angular coefficient for this pair of alternatives. 

Test 1: The value of the coefficient of risk aversion must be 

negative. 

Test 2: The necessary conditions: - 1/2 ̂  l/2b(X^-X2) £ 1/2 must be 

satisfied. 

Test 3: At least one basic solution to Eqs. 6-4 and 6-5 must be 

feasible. 
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If both of the values of the coefficient of risk aversion obtained from 

Eq. 6-11 fail to satisfy either test, the global minimum index of utility 

must occur at one of the corner boundary points. The minimum angular 

coefficient must also occur at the corner boundary points. 

After the possible ranges for all pairs of alternatives have been 

found, the common range of the angular coefficients can be identified. 

The lower limit of the common range of the angular coefficients is the 

maximum of Che minimum angular coefficients, , for all pairs of 

alternatives. The upper limit of the common range of the angular 

coefficients is zero. The common range of the angular coefficients 

represents the assembly of all possible values of angular coefficients 

from which a decision maker can choose. The lower limit of the common 

range of the angular coefficients forms the final decision line. If the 

pair of alternatives on which the final angular coefficient is established 

is not included on the final decision line, adjustment of the selected 

final angular coefficient is necessary. 

D. Summary 

For weak ranking in the context of Incomplete knowledge, the 

necessary steps in the simplified approach are restated as follows: 

1. For each state of nature, solve for the rates of return comparing 
each alternative with present conditions and with one another. 

2. For all pairs of alternatives, i.e., alternative compared with 
present conditions or compared with one another, draw a line of 
indiscernibility between the lowest rate of return and the 
highest rate of return representing the "best case" and "worst 
case" scenarios. Let the lowest rate of return ("worst case" 
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scenario) be defined as Che highest rate of return 

("best case" scenario) as i^gy. 

Obtain the minimum angular coefficients based on the value of 

i in on the lines of indiscernibility according to either one of 
the following cases; 

a) If there are more than two distinct payoff values, calculate 

a^uin for all corner boundary points according to Eq. 6-10. 

- EXP[AEX]j 

—j jniln 

where: j = a certain pair of alternatives 

—i min ~ lower limit of angular coefficient 
^i'min ^ lowest rate of return on the line of 

* indiscernibility 
EXP[AEX]j = expected value of payoffs based on 
VAR[AExjj = variance of payoffs merit based on 

Choose the largest a^^^ value from among the values of 
all corner boundary points as the minimum angular coefficient 
for each pair of alternatives. 

b) If there are only two distinct payoff values, calculate the 
possible values of b, the coefficient of risk aversion. 

-(xt+xi) + 2 / x^xi 

(xt-xi)2 

Only the value of the coefficient of risk aversion that 
satisfies all of the following tests should be used to 
determine the minimum angular coefficient for this pair of 
alternatives. 

Test 1: The value of the coefficient of risk aversion must 
be negative. 

Test 2: The necessary conditions; - 1/2 ̂  l/Z^CX^-X^) ̂  1/2 
must be satisfied. 

Test 3; At least one basic solution to Eqs. 6-4 and 6-5 must 

be feasible. 

If both of the values of the coefficient of risk aversion 
obtained from Eq. 6-11 fail to satisfy all tests, the 
minimum angular coefficient must occur at the corner boundary 
points. 
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4. For all pairs of alternatives, choose the largest (in other 
words, the least negative) value of a^ calculated in Step 3. 
The range for possible final a^ values is then defined by the 
maximum of (which is a negative value) and zero. The 
max(ajjj^jj) value is the most conservative angular coefficient 
within the possible range; as the angular coefficients within the 
range becomes less negative, decisions become less conservative. 

5. Calculate the minimum utility index ROR for each pair of 
alternatives based on the angular coefficient selected using a 
trial and error routine. In each trial and error routine, the 
payoff values for the various states of nature are calculated. 

a) If there are more than two distinct payoff values, it is only 
necessary to calculate the values of index of utility at the 
corner boundary points in order to determine the minimum 
index of utility. 

b) If there are only two distinct payoff values, it is possible 
that solutions exist inside the feasible region. Check the 
necessary conditions: - 1/2 £ l/2b(Xj.-Xj) ̂  1/2. If the 
necessary conditions are not met, the global minimum will 
still occur at corner boundary points. If the necessary 
conditions are met, Eqs. 6-4, 6-5, and 6-3 are served to 
locate the relative minimums. Check all basic solutions to 
Eqs. 6-4 and 6-5. If at least one basic solution to Eqs. 6-4 
and 6-5 is feasible, the global minimum index of utility can 
be calculated by Eq. 6-9. If all the basic solutions to Eqs. 
6-4 and 6-5 are not feasible, the global minimum index of 
utility must occur at the corner boundary points. 

The trial and error routine is repeated until a utility index ROR 
is found at which the minimum index of utility is of zero value. 

6. Form the final decision line by taking the minimum utility index 
ROR for each pair of alternatives calculated in Step 5. 

Examine the final decision line. If the pair of alternatives 
from which the final a^.[„ value is selected is included on the 
final decision line, the decision procedure is completed. 
However, if the pair of alternatives from which the final 
value is selected is not included on the final decision line, the 
final aj^j_n value must be modified. Take the next least negative 
value or as the revised final angular coefficient. Steps 5 
and 6 are repeated as many times as necessary. 
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The same numerical example used for Constant's approach will be 

presented again to illustrate the formation of the final decision line 

under weak ranking. The necessary steps are as follows; 

1. For each state of nature, solve for the rates of return comparing 
each alternative with present conditions and with one another. 

For state of nature , the rates of return are as follows: 

Internal ROR over 
P A B C 

Alternative A 22. .11% 
B 21, .15% 18. 72% 
C 20. .42% 17. 57% 15. 24% 
D 19. .06% 15. 94% 14. 05% 13. 46% 

For state of nature N2, the rates of return are as follows ; 

Internal ROR over 
P A B c 

Alternative A 23.68% 
B 23.57% 23.30% 
C 21.63% 18.12% 5.91% 
D 21.08% 18.45% 15.03% 18.93% 

For state of nature N^, the rates of return are as follows; 

Internal ROR over 
P A B C 

Alternative A 21. .96% 
B 23. .57% 27. 33% 
C 19. .22% 14. 43% -48. 22% 
D 20. .38% 18. 81% 12. 40% 24. 61% 

For state of nature 1 N^, the rates of return are as follows : 

Internal ROR over 
P A B C 

Alternative A 25.08% 
B 22.36% 14.99% 
C 24.04% 22.29% 34.26% 
D 20.99% 16.71% 17.79% 7.11% 

2. For all pairs of alternatives, i.e., alternative compared with 
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present conditions or compared with one another, draw a line of 
indiscernibility between the highest rate of return and the 
lowest rate of return representing the "best case" and "worst 
case" scenarios, respectively. Let the highest rate of return be 

defined as ij^a^» the lowest rate of return as i^^^. The 
lines of indiscernibility for all pairs of alternatives on the 
decision line are as follows: 

^  —  p  _ _ _ _ _ _ _ _ _ _ _ _ —  

21.96% 25.08% 

3 _ p +______—_______________ _____ 

21.15% 23.57% 

g _ ^ — 

14.99% 27.33% 

Q p ^ ********** 

19.22% 24.04% 

C — A 4——— _*****************_—_________—_— 
14.43% 22.29% 

q _ b ************************************************************** 

0 34.26% 

0 _ p ^—_— —_________________——______ 

19.06% 21.08% 

d  —  — _ _ _ _ _ _ _ _ _ _ — _ _ _ _ _ _ _ — — _ _ — _  

15.94% 18.81% 

0 _ b ^ ************— _____—_____________ 

12.40% 17.99% 

0 _ (j ^—____********************************************___ ______ 

7.11% 24.61% 

3. Obtain the minimum angular coefficients based on the value of 

ijjjin on the lines of indiscernibility. 

For alternative k compared with present conditions, the value of 

^min Che line of indiscernibility is found Co be 21.96%. The 
following figures of merit (AEX in this case) can be calculated 
based on 21.96%: 

Ni: ®F1 = 0%, e 
Nn: ®F1 = 2%, e 
Nn: ®F1 = 2%, e 
N4: ®F1 = 1%, e 

= 0%, AEX^ = 11.05 
= 1%, AEXg = 130.49 
=-1%, AEXo = 0.00 
=> 3%, AEX4 = 240.19 
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Since there are more than two distinct payoff values, calculate 
for all the corner boundary points according to Eq. 6-10, 

—j,min 

- EXP[AEX]j 
(Eq. 6-10) 

The resulting values of the for each corner boundary point 
are listed as follows, 

Corner Probability for 
boundary state of nature 
point 12 3 4 Mean 

1 1.0 - - - 11.05 
2 .50 .50 - - 70.77 
3 .33 .33 .33 - 47.18 
4 .25 .25 .25 .25 95.43 

Variance 
0 

3566.31 
3490.57 
9602.47 

£min 
value 

-0.09038 
-0.06156 
-0.04526 

Choose the largest value from among the values of all 

corner boundary points, -0.04526, as the minimum angular 
coefficient for alternative A compared with present conditions. 

In the same manner, the minimum angular coefficients for all 
pairs of alternatives at various corner boundary points (CBP) can 
be calculated and listed as follows, 

Pair of 
fmin 

Alternatives CBP 1 CBP 2 CBP 3 CBP 4 Max. 

A - P — CO -.09038 -.06156 -.04526 -.04526 

B - P — oo -.03669 -.05504 -.06642 -.03669 

B — A — 00 -.23272 -.12720 -.05831 -.05831 

C - P — 00 -.21196 -.05426 -.02793 -.02793 

C - A — 00 -6.9229 -.13918 -.07040 -.07040 

C - B — 00 + + + + 
D - P -.03483 -.05576 -.07107 -.03483 

D - A -.06847 -.09430 -.09225 -.06847 

D — B -1.6527 -.23163 -.11484 -.11484 
D - C -.50576 -.22254 -.09349 -.09349 

4. From among all pairs of alternatives, choose the least negative 
value of aj min» "0.02793 (C over P). This value is the most 
conservative angular coefficient within the possible range from 
-0.02793 to zero. 

5. Calculate the minimum utility index ROR for each pair of 
alternatives based on the angular coefficient selected using a 
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trial and error routine. In each trial and error routine, the 
payoff values for the various states of nature are calculated 
according to a trial rate of return. 

For alternative A compared to present conditions, the four payoff 
values (AEX) for the various states of nature using a trial rate 

of return of 22.11% were as follows: 

Ni: ®F1 = 0%, ®F2 = 0%, AEXj = 

Ng: ®F1 = 2%, ®F2 = 1%, AEXg =• 

No: ®F1 = 2%, ®F2 =-1%, AEX3 = 

N4: ®F1 = 1%, ®F2 = 3%, AEX^ = 

0.00 
119.33 
-11.05 
228.92 

Since all the four payoff values are different from one another, 
the extreme values of the index of utility can be found at the 
corner boundary points. Using the angular coefficient of 
-0.02793, the values of the mean, variance, and index of utility 
at each of the corner boundary points are listed as follows. 

Corner Probability for 
boundary state of nature 
point 12 3 4 Mean 

1  1 .0  0 .00  
2 .50 .50 - - 59.66 
3 .33 .33 .33 - 36.09 
4 .25 .25 .25 .25 84.30 

Variance 
0 

3559.94 
3484.40 
9585.08 

Index of 
utility 

0.00* 
37.68 
14.58 
25.12 

Since the minimum index of utility(*) is zero at the trial rate 
of return of 22.11%, this trial rate of return is the minimum 
utility index ROR for alternative A compared to present 
conditions at the angular coefficient of -0.02793. 

In the same manner, the minimum utility index ROR for all the 
pairs of alternatives can be calculated and summarized as 
follows, 

Minimum utility index ROR over 
P A B C 

Alternative A 
B 
C 
D 

22.11% 
21.15% 
19.22% 
19.06% 

17.86% 
16.23% 
15.94% 

0.20% 
13.66% 1 2 . 1 1 %  

The final decision line based on the angular coefficient 
selected, i.e., -0.02793, is as follows. 

D 
— +  

13.66% 

B 
—+ 

17.86% 

—+ 

2 2 . 1 1 %  
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Since the final decision line does not include the pair of 
alternatives C over P, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 
alternatives, choose the next least negative value of min» 
-0.03483 (D over P). 

5a. Calculate the minimum utility index ROR based on the angular 

coefficient selected, i.e., -0.03483. 

Minimum utility index ROR over 
P A B C 

Alternative A 22. ,11% 
B 21. ,15% 17. 14% 
G 18. ,74% 16. ,11% 0.18% 

D 19. ,06% 15. 94% 13.61% 11.32% 

6a. The final decision line based on the angular coefficient 
selected, i.e., -0.03483, is as follows, 

D  B A P  
4—— —— — —'———— —4 ————h ———— —— 

0 13.61% 17.14% 22.11% 

Since the final decision line does not include the pair of 
alternatives D over P, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 

alternatives, choose the next least negative value of min> 
-0.03669 (B over P). 

5b. Calculate the minimum utility index ROR based on the angular 
coefficient selected, i.e., -0.03669. 

Minimum utility index ROR over 
P A B C 

Alternative A 22.11% 
B 21.15% 16.95% 
C 18.61% 16.06% 0.18% 
D 19.01% 15.94% 13.60% 11.12% 

6b. The final decision line based on the angular coefficient 
selected, i.e., -0.03669, is as follows, 

D  B A P  
+—— ——— ————— —  ———h—— ——i— — — — —  — — —  

0 13.60% 16.95% 22.11% 
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Since the final decision line does not include the pair of 
alternatives B over P, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 
alternatives, choose the next least negative value of £. , ,  
-0.04526 (A over P). ' 

5c. Calculate the minimum utility index ROR based on the angular 

coefficient selected, i.e., -0.04526. 

Minimum utility index ROR over 
P A B C 

Alternative A 21. ,96% 
B 20, ,87% 16. ,13% 
C 18. .04% 15. ,62% 0.16% 
D 18. ,77% 15. ,94% 13.54% 10.30% 

6c. The final decision line based on the angular coefficient 

selected, i.e., -0.04526, is as follows. 

0 13.54% 16.13% 21.96% 

Since the final decision line does include the pair of 
alternatives A over P, the final decision line is completed. 
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VII. DECISION PROCEDURE FOR STRICT RANKING IN THE CONTEXT OF 

INCOMPLETE KNOWLEDGE 

For strict ranking in the context of incomplete knowledge, Kmietowicz 

and Pearman [1981] have shown that the extreme expected values must occur 

at corner boundary points. In Chapter III, the algorithm of searching for 

the maximum and minimum variances under strict ranking was demonstrated. 

The expected value and variance were then combined into a single index, 

the index of utility, by introducing a coefficient of risk aversion. In 

Chapter IV, the algorithm of searching for the maximum and minimum index 

of utility under strict ranking was studied. Under strict ranking, it was 

shown that the global maximum index of utility always occurs at the corner 

boundary points. The global minimum index of utility can usually be 

located at one of the corner boundary points. When no more than two 

distinct payoff values exist for n possible states of nature, the global 

minimum index of utility may occur inside the feasible region. 

A decision procedure has been developed in Chapter VI to form the 

final decision line in the context of incomplete knowledge for weak 

ranking. One of the objectives of this research is to apply the decision 

procedure to form the final decision line in the context of incomplete 

knowledge for strict ranking. 

Section A applies the proof in Chapter IV which states that a 

necessary and sufficient condition for a relative minimum index of utility 

to exist inside the feasible region is that there are at most two distinct 

payoff values for n states of nature (n ̂  3). 

If there are two distinct payoff values, multiple relative minimum 
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indexes of utility of equal value exist. The multiple relative minimum 

indexes of utility may be located either inside or outside the feasible 

region. If at least one relative minimum index of utility exists inside 

the feasible region, the relative minimum defines the global minimum index 

of utility. If none of the multiple relative minimums exists inside the 

feasible region, the global minimum must occur at one of the corner 

boundary points. 

Section B examines the fact that a range of rates of return on index 

of utility (utility index ROR) exists for a fixed angular coefficient. 

For a fixed angular coefficient, the largest utility index ROR is the 

interest rate at which the maximum index of utility equals zero. The 

smallest utility index ROR is the interest rate at which the minimum index 

of utility also equals zero. If the maximum and minimum index of utility 

can be identified by comparing the values of the index of utility at 

various corner boundary points, then the largest and smallest utility 

index ROR can also be identified by comparing the utility index ROR at 

various corner boundary points. 

In Section C, the method to identify the possible ranges of the 

angular coefficient for each pair of alternatives is studied. The minimum 

angular coefficient, is the angular coefficient at which the 

smallest utility index ROR is equal to the minimum rate of return of the 

indiscernible region. After the possible ranges for all pairs of 

alternatives are found, the common range of the angular coefficient can be 

identified to represent the assembly of all possible values of the angular 

coefficient from which a decision maker can choose. The minimum angular 
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coefficient is suggested to form the final decision line. If the pair of 

alternatives on which the final angular coefficient is based is not 

included on the final decision line, adjustment of the selected final 

angular coefficient is necessary. 

By including the necessary modifications, Section D summarizes the 

decision procedure under strict ranking in the context of incomplete 

knowledge with a numerical example. 

A. Extreme Values of Index of Utility 

Under the constraints of strict ranking of incomplete knowledge, it 

was proved in Chapter IV that the extreme indexes of utility (maximum and 

minimum) for a coefficient of risk aversion can be found at one of the 

corner boundary points if there are more than two distinct payoff values 

for n (n > 3) states of nature. The global minimum index of utility may 

occur inside the boundary if there are one or two payoff values for n 

states of nature. If there is only one payoff value, there is only one 

value of the index of utility which equals the payoff value since the 

variance is always zero. 

If there are only two distinct payoff values for n (n > 3) states of 

nature, the maximum index can still be identified by comparing the values 

of index of utility at the corner boundary points as discussed in Section 

C of Chapter IV. However, multiple relative minimum indexes of utility 

which are located inside the feasible region can be located by solving the 

following equations (Eqs. 4-15, 4-16, and 4-3 in Chapter IV). 
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n 
I (l-ai)Ti = 1/2 - C" + l/ZbCX^-Xj) (Eq. 7-1) 
i=t 

n 
l a^Ti = 1/2 - C - l/2b(Xt-Xi) (Eq. 7-2) 

1=1 

Ti 0 (for 1 = 1, 2, n) (Eq. 7-3) 

The multiple relative minimum indexes can be located either inside or 

outside of the feasible region. The necessary conditions for at least one 

relative minimum index of utility to exist inside the feasible are; 

- 1/2 + C" < l/2b(X^-Xi) < 1/2 - C (Eq. 7-4) 

If none of the multiple relative minimum Indexes of utility exists inside 

the feasible region, the global minimum index of utility still occurs at 

one of the corner boundary points. If at least one relative minimum index 

of utility exists inside the feasible region, the global minimum index of 

utility can be calculated directly by the following equation (Eq. 4-23 in 

Chapter IV), 

[b(x^-xi) + 1]2 

I — ———————————————— +  X-i ( E q. 7—5) 

4b 

In summary, the assessment of the extreme values of the index of 

utility under strict ranking in the context of incomplete knowledge must 

proceed in the following way. 

a. Global maximum At least one global maximum occurs at the 

corner boundary points despite the number of distinct payoff 

values. 

b. Global minimum 

i. If there are more than two distinct payoff values, the 
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global minimum index of utility must occur at the corner 

boundary points. 

ii. If there are only two distinct payoff values, it is possible 

that relative minimum indexes of utility exist inside the 

feasible region. Check the necessary conditions using Eq. 

7-4. If the necessary conditions are not met, the global 

minimum index of utility will still occur at the corner 

boundary points. If the necessary conditions are not met, 

Eqs. 7-1, 7-2, and 7-3 are served to locate the multiple 

relative minimum indexes of utility. Check all basic 

solutions to Eqs. 7-1 and 7-2. 

Case 1: If at least one basic solution is feasible, 

the global minimum index of utility can be calculated 

by Eq. 7-5. 

Case 2; If none of the basic solutions is feasible, 

the global minimum index of utility must occur at the 

corner boundary points. 

The same numerical example used in Chapter V will be adopted again 

with additional data as required under strict ranking. The additional 

data are: 

kj^ = .08, k2 = .06, kg - .04, k^ - .02 

For alternative A compared to present conditions, the four payoff 
values (AEX) for the various states of nature using a rate of return 
of 20% were as follows. 

^1* ®F1 0%, ep2 = 0%, 

^2* ^f1 " 2%, ep2 ̂  1%, 
ng: epj^ = 2%, ep2 ="1%, 

N^: ef.^ = 1%, ep2 = 3%, 

AEX, = 156.20 

AEX2 = 277.08 

AEX3 = 145.04 
AEX^ = 388.14 
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Since all four payoff values are different from one another, the 
extreme indexes of utility can be found at the corner boundary 
points. Assuming the angular coefficient is known to be -0.05 (or 
equivalently the coefficient of risk aversion is -0.01), the values 
of the mean, variance, and index of utility at each of the corner 
boundary points are listed as follows, 

Corner Probability for 
boundary state of nature Index of 

point 1 2 3 4 Mean Variance utility 

1 .80 .12 .06 .02 174. 68 2495. 40 149. 72 

2 .50 .42 .06 .02 210. 94 4223. 87 168. 70** 

3 .40 .32 .26 .02 196. 62 4150. 24 155. 12 

4 .35 .27 .21 .17 225. 93 8225. 00 143. 38* 

Since the coefficient of risk aversion is defined as the product of 

the angular coefficient and the minimum attractive rate of return, 

different values for the coefficient of risk aversion result at different 

interest rates by keeping the angular coefficient at the same value of 

-0.05. For each value of the coefficient of risk aversion, both the 

maximum(**) and minimum(*) index of utility can be identified by the 

procedure described above. In this particular numerical example, both the 

maximum and minimum index of utility occur at the corner boundary points 

for different values of the coefficient of risk aversion. Figure 3 shows 

the extreme values of the index of utility for a spectrum of interest 

rates with an angular coefficient of -0.05. Since there are more than two 

distinct payoff values at each of the interest rates, the maximum and 

minimum index of utility always occur at the corner boundary points for 

the numerical example. 
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Figure 3. Extreme values of the index of utility under strict ranking 



www.manaraa.com

158 

B. Maximum and Minimum Utility Index Rates of Return 

For strict ranking in the context of incomplete knowledge, there is a 

range of values for the index of utility in respect to one value of rate 

of return at a fixed angular coefficient as discussed in Section A. The 

approach to search for the maximum and minimum index of utility in this 

range was also presented in Section A. Since there is a range of values 

for the index of utility in respect to one value of rate of return at a 

fixed angular coefficient, there must be multiple rates of return at which 

the index of utility of zero value is Included in the possible range of 

index values. In other words, there must be a range of utility index ROR 

for a fixed angular coefficient which may cause the index of utility to 

equal zero at certain probability combinations. Let the upper limit of 

the range of utility index ROR be defined as the maximum utility index 

ROR, and the lower limit as the minimum utility index ROR. For a fixed 

angular coefficient, the maximum utility index ROR is the interest rate at 

which the maximum index of utility equals zero. The minimum utility index 

ROR is the interest rate at which the minimum Index of utility equals 

zero. 

At least one global maximum index of utility occurs at the corner 

boundary points despite the number of distinct payoff values as discussed 

in Section A. Therefore, the maximum utility index ROR must occur at one 

of the corner boundary points. The value of the maximum utility index ROR 

can be found by a trial and error routine. At each trial and error 

routine, the values of index of utility on the corner boundary points are 

calculated at a trial rate of return. The trial and error routine Is 



www.manaraa.com

159 

repeated until a utility index ROR is found at which the maximum index of 

utility is of zero value. 

However, it is possible that the minimum utility index ROR occurs 

inside the feasible region. A trial and error routine is still used to 

search for the value of the minimum utility index ROR. In each trial and 

error routine, the payoff values for various states of nature are 

calculated according to a trial rate of return. 

If there are more than two distinct payoff values, the minimum index 

of utility must occur at the corner boundary points. In this case, it is 

only necessary to calculate the values of index of utility at the corner 

boundary points in order to determine the minimum index of utility. 

If there are only two distinct payoff values, it is possible that a 

relative minimum index of utility exists inside the feasible region. The 

procedure is to check the necessary conditions: - 1/2 + C" < l/ZbCX^-X^) ̂  

1/2 - C (Eq. 7-4). If the necessary conditions are not met, the global 

minimum index of utility must occur at corner boundary points. If the 

necessary conditions are met, Eqs. 7-1, 7-2, and 7-3 are served to locate 

the multiple relative minimum indexes of utility. Check all basic 

solutions to Eqs. 7-1 and 7-2. If at least one basic solution is 

feasible, the global minimum index of utility can be calculated by Eq. 

7-5. If none of the basic solutions is feasible, the global minimum index 

of utility must occur at corner boundary points. 

The trial and error routine is repeated until a utility index ROR is 

found at which the minimum index of utility is of zero value. 

In the numerical example for alternative A compared to present 
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conditions, the maximum and minimum utility index ROR at an angular 

coefficient of -0.05 are found by trial and error routine to be 22.22% and 

21.85%, respectively. 

At 22.22%, the payoff values are as follows, 

AEX, = -8.33 
AEX, = 110.92 

AEX3 = -19.37 
AEX4 = 220.44 

The values of the mean, variance and index of utility at each of the 
corner boundary points are listed as follows. 

Corner Probability for 
boundary state of nature Index of 

point 1 2 3 4 Mean Variance utility 

1 .80 .12 .06 .02 9.89 2428.37 -17.08 

2 .50 .42 .06 .02 45.67 4110.83 0.00** 

3 .40 .32 .26 .02 31.54 4039.70 -13.34 

4 .35 .27 .21 .17 60.44 8032.67 -28.79 

Notice that the maximum index of utility(**) which occurs at corner 
boundary point 2 is of zero value at the trial rate of return of 
22.22% for an angular coefficient of -0.05. At 21.85%, the payoff 
values are as follows, 

AEX, = 19. 22 
AEXg = 138. 74 
AEX3 = 8. 16 
AEX4 = 248. 51 

Since there are more than two payoff values, the minimum index of 
utility must occur at the corner boundary points. The values of the 
mean, variance, and index of utility at each of the corner boundary 
points are listed as follows. 

Corner Probability for 
boundary state of nature Index of 

point 1 2 3 4 Mean Variance utility 

1 .80 .12 .06 .02 37.49 2439.34 10.84 

2 .50 .42 .06 .02 73.35 4129.32 28.23 
3 .40 .32 .26 .02 59.18 4057.78 14.85 

4 .35 .27 .21 .17 88.15 8069.03 0.00* 

Notice that the minimum index of utility(*) which occurs at corner 
boundary point 4 is of zero value at the trial rate of return of 
21.85% for an angular coefficient of -0.05. 
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C. Determination of Final Angular Coefficient 

In the context of incomplete knowledge, there is a range of utility 

index ROR for each value of the angular coefficient. The approach to 

identify the maximum and minimum utility index ROR was presented in 

Section B. This section will focus on the selection of the angular 

coefficient which will form the final decision line. 

Before determining the value of the final angular coefficient, the 

possible angular coefficients should be evaluated for each pair of 

alternatives. For each pair of alternatives, i.e., alternatives compared 

with present conditions or compared with one another, a line of 

indiscernibility is drawn between the highest rate of return and the 

lowest rate of return representing the "best" and "worst" states of 

nature; Since a rate of return higher than the highest or lower than the 

lowest is impossible, a reasonable utility index ROR must fall within the 

line of indiscernibility. Therefore, those angular coefficients, which 

could cause the utility index ROR to be greater than the highest rate of 

return from the "best" state of nature or less than the lowest rate of 

return from the "worst" state of nature, need not to be considered any 

further. Those angular coefficients, which could cause the utility index 

ROR to fall within the line of indiscernibility, are the candidates for 

the final angular coefficient. 

The minimum angular coefficient, the lower limit of the 

possible angular coefficients at which the minimum utility index ROR are 

greater than or equal to the smallest rate of return on the line of 

indiscernibility. It is not necessary to consider an angular coefficient 
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less than because any angular coefficient less than a^^^ could cause 

a utility index ROR lower than the lowest rate of return possible. 

The maximum angular coefficient, is the upper limit of the 

possible angular coefficients at which the maximum utility index ROR are 

less than or equal to the largest rate of return on the line of 

indiscernibility. Theoretically, those angular coefficients between 

and are all possible for final selection. However, since the value 

of is always positive, causing contradictory conclusions as discussed 

in Chapter V, the possible range for the angular coefficient is from 

to zero. 

Although the value of the minimum angular coefficient for a certain 

pair of alternatives can be found by the trial and error method as in 

Constant's decision approach, a more straightforward approach to locate 

the value of the minimum angular coefficient is developed. The approach 

developed under weak ranking is also applicable under strict ranking. 

The payoff values for all possible states of nature are first 

. calculated according to i^^^. If there are more than two distinct payoff 

values, the minimum index of utility must occur at one of the corner 

boundary points. The minimum angular coefficient must also occur at one 

of the corner boundary points. The possible minimum angular coefficient 

for each corner boundary point can be obtained by the following equation, 

- EXP[AEX]j 

The procedure is to choose the largest a^^„ value from among the 

values of all corner boundary points as the minimum angular coefficient 

ILj,rain (Eq. 7-6) 
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for this pair of alternatives. The largest is selected because it is 

the most conservative angular coefficient at which the minimum utility 

index ROR is equal to 

If there are only two distinct payoff values, it is possible that the 

minimum index of utility exists inside the feasible region. The 

coefficient of risk aversion can be calculated according to the following 

equation, 

-(X.+X,) + 2 / X^X, 
b (Eq. 7-7) 

(x^-xp^ 

Notice that there are two values of the coefficient of risk aversion 

obtained from Eq. 7-7. However, only the value of the coefficient of risk 

aversion that satisfies all of the following tests should be used to 

determine the minimum angular coefficient for this pair of alternatives. 

Test 1: The value of the coefficient of risk aversion must be 

negative. 

Test 2; The necessary conditions: - 1/2 + C" ̂  l/ZbCX^-X^) ̂  1/2 - C 

(Eq. 7-4) must be satisfied. 

Test 3: At least one basic solution of Eqs. 7-1 and 7-2 must be 

feasible. 

If both of the values of the coefficient of risk aversion obtained from 

Eq. 7-7 fail to satisfy the tests, the global minimum index of utility 

must occur at one of the corner boundary points. The minimum angular 

coefficient must also occur at the corner boundary points. 

After the possible ranges for all pairs of alternatives have been 

found, the common range of the angular coefficients can be identified. 
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The lower limit of the common range of the angular coefficients is the 

maximum of the minimum angular coefficients, max(^^^), for all pairs of 

alternatives. The upper limit of the common range of the angular 

coefficients is zero. The common range of the angular coefficients 

represents the assembly of all possible values of angular coefficients 

from which a decision maker can choose. The lower limit of the common 

range of the angular coefficients forms the final decision line. If the 

pair of alternatives on which the final angular coefficient is established 

is not included on the final decision line, adjustment of the selected 

final angular coefficient is necessary. 

D. Summary 

For strict ranking in the context of Incomplete knowledge, the 

necessary steps in the simplified approach are restated as follows: 

1. For each state of nature, solve for the rates of return comparing 
each alternative with present conditions and with one another. 

2. For all pairs of alternatives, i.e., alternative compared with 
present conditions and with one another, draw a line of 
indlscernibility between the lowest rate of return and the 
highest rate of return representing the "best case" and "worst 
case" scenarios. Let the lowest rate of return ("worst case" 
scenario) be defined as i^^^, and the highest rate of return 
("best case" scenario) as 

3. Obtain the minimum angular coefficients based on the value of 

i in on the lines of indlscernibility according to either one of 
the following cases: 

a) If there are more than two distinct payoff values, calculate 
a^jjin for all the corner boundary points according to Eq. 7-6, 
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- EXP[AEX]j 

(ij,min)(VA&[AEX]j) 

3 j S 3  — — — — — — — — — — — —  ( E Q •  7 " 6 )  

From among the values of all corner boundary points, 
choose the largest (least negative) a^j„ value as the minimum 
angular coefficient for each pair of alternatives. 

b) If there are only two distinct payoff values, calculate the 
possible values of b, the coefficient of risk aversion. 

-(X^+Xj) + 2 / X^Xi 

(Xc-Xi)2 

Only the value of the coefficient of risk aversion that 
satisfies all of the following tests should be used to 
determine the minimum angular coefficient for this pair of 
alternatives. 

Test 1: The value of the coefficient of risk aversion must 
be negative. 

Test 2: The necessary conditions: - 1/2 + C" ̂  l/2b(Xj.-X]^) ̂  
1/2 - C (Eq. 7-4) must be satisfied. 

Test 3; At least one basic solution of Eqs. 7-1 and 7-2 must 
be feasible. 

If both of the values of the coefficient of risk aversion 
obtained from Eq. 7-7 fail to satisfy the tests, the minimum 
angular coefficient must also occur at the corner boundary 
points. 

4. For all pairs of alternatives, choose the largest (least 
negative) value of calculated in Step 3. The range for 
possible final a^ values is then defined by the maximum of 
(which is a negative value) and zero. The max(^^^) value is the 
most conservative angular coefficient within the possible range; 
as the angular coefficients within the range becomes less 
negative, decisions become less conservative. 

5. Calculate the minimum utility index ROR for each pair of 
alternatives based on the angular coefficient selected using a 
trial and error routine. In each trial and error routine, the 
payoff values for various states of nature are calculated. 
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a) If there are more than two distinct payoff values, it is only 
necessary to calculate the values of index of utility at 
corner boundary points in order to determine the minimum 
index of utility. 

b) If there are only two distinct payoff values, it is possible 
that a relative minimum index of utility exists inside the 
feasible region. Check the necessary conditions: - 1/2 + C" 
< l/ZbCX^-X}) < 1/2 - C (Eq. 7-4). If the necessary 
conditions are not met, the global minimum index of utility 
must occur at the corner boundary points. If the necessary 
conditions are met, Eqs. 7-1, 7-2, and 7-3 are served to 
locate the multiple relative minimum indexes of utility. 
Check all basic solutions of Eqs. 7-1 and 7-2. If at least 
one basic solution is feasible, the global minimum index of 
utility can be calculated by Eq. 7-5. If none of the basic 
solutions is feasible, the global minimum index of utility 
must occur at the corner boundary points. 

The trial and error routine is repeated until a utility index ROR 
is found at which the minimum index of utility is of zero value. 

6. Form the final decision line by taking the minimum utility index 
ROR for each pair of alternatives calculated in Step 5. 

Examine the final decision line. If the pair of alternatives 
from which the final value is selected is included on the 
final decision line, the decision procedure is completed. 
However, if the pair of alternatives from which the final 
value is selected is not included on the final decision line, the 

final a value must be modified. From among the remaining 
pairs or alternatives, take the next least negative value of 
as the revised final angular coefficient. Steps 5 and 6 are 
repeated as many times as necessary. 

The same numerical example used for Constant's approach will be 

presented again to illustrate the formation of the final decision line 

under strict ranking. The necessary steps are as follows: 

1. For each state of nature, solve for the rates of return comparing 
each alternative with present conditions and with one another. 

For state of nature Np the rates of return are as follows: 
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Internal ROR over 
Â B 

Alternative A 22. .11% 
B 21. ,15% 18. 72% 
C 20. .42% 17. 57% 15. 24% 

D 19. .06% 15. 94% 14. 05% 13.46% 

For state of nature 1 N2, the rates of return are as follows : 

Internal ROR over 
P A B C 

Alternative A 
B 
C 
D 

23.68% 
23.57% 23.30% 
21.63% 18.12% 5.91% 
21.08% 18.45% 15.03% 18.93% 

i Ng, the rates of return are as follows : 

Internal ROR over 
P A B C 

Alternative A 21. ,96% 
B 23. ,57% 27. 33% 
C 19, ,22% 14. 43% —48. 22% 

D 20. ,38% 18. 81% 12. 40% 24. 61% 

For state of nature N, •, the rates of return are as follows : 

Internal ROR over 
P A B C 

Alternative A 
B 
C 
D 

25.08% 
22.36% 
24.04% 
20.99% 

14.99% 
22.29% 
16.71% 

34.26% 
17.79% 7.11% 

2. For all pairs of alternatives, i.e., alternative compared with 
present conditions or compared with one another, draw a line of 
indiscernibility between the highest rate of return and the 
lowest rate of return representing the "best case" and "worst 
case" scenarios, respectively. Let the highest rate of return be 
defined as i^g^» the lowest rate of return as iQ^^' The 
lines of indiscernibility for all pairs of alternatives on the 
decision line are as follows: 

A - P +-- ——****** — 

21.96% 25.08% 
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g _ p — — 

21.15% 23.57% 

g _ ^ +—— 
14.99% 27.33% 

(j _ p — 

19.22% 24.04% 

g _ ^ _l —-— —***************** 
14.43% 22.29% 

g _ g ************************************************************** 
0 34.26% 

Q _ p ***** 

19.06% 21.08% 

0 _ ^ —------—— ****** 
15.94% 18.81% 

D  —  g  — - — — — — - * * * * * * * * * * * * — — — -

12.40% 17.99% 

J)" — Q +— —********************************************—-— — 

7.11% 24.61% 

3. Obtain the minimum angular coefficients based on the value of 

ijjjin on the lines of indiscernibility. 

For alternative A compared with present conditions, the value 

of igj^jj on the line of indiscernibility is found to be 21.96%. 
The following figures of merit (AEX in this case) can be 
calculated based on 21.96%: 

Ni*. ep^ 
^2* ®F1 
No ! ®Fi ™ 2%, ®F2 AEX^ ^ 0.00 
N^: epi = 1%, ep2 = 3%, AEX^ = 240.19 

Since there are more than two distinct payoff values, calculate 
for all the corner boundary points according to Eq. 7-6, 

= 0%, ®F2 
®F2 
®F2 

= 0%, AEXi 
AEXg =. 2%, 

®F2 
®F2 
®F2 

= 1%, 
AEXi 
AEXg 

= 2%, 

®F2 
®F2 
®F2 =-1%, AEXg 

= 1%, ®F2 = 3%, AEX4 

- EXP[AEX]j 

(ij,nin)(VAK:AGX|j) 

a J = ———————————————— (Eq. 7—*6 ) 

The resulting values of the for each corner boundary point 
are listed as follows. 
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Corner Probability for 
boundary state of nature Êmin 
point 1 2 3 4 Mean Variance value 

1 .80 .12 .06 .02 29. 31 2436. 06 -0. 05479 

2 .50 .42 .06 .02 65. 14 4123. 79 -0. 07193 

3 .40 .32 .26 .02 50. 98 4052. 37 -0. 05730 

4 .35 .27 .21 .17 79. 93 8058. 20 -0. 04517 

Choose the largest (least negative) value from among the 

£min values of all corner boundary points, -0.04517, as the 
minimum angular coefficient for alternative A compared with 
present conditions. 

In the same manner, the minimum angular coefficients for all 
pairs of alternatives at various corner boundary points (CBP) can 
be calculated and listed as follows, 

Alternatives CBP 1 CBP 2 CBP 3 CBP 4 Max. 

A - P -.05479 -.07193 -.05730 -.04517 -.04517 
B - P -.02341 -.03670 -.04568 -.05087 -.02341 
B - A -.14576 -.15299 -.11002 -.07055 -.07055 

C - P -.11243 -.10308 -.05351 -.03244 -.03244 
C - A -.43840 -.43459 -.14537 -.08761 -.08761 
C - B + + + + + 
D - P -.02353 -.03543 -.04658 -.05208 -.02353 
D - A -.04097 -.06620 -.07791 -.07825 -.04097 

D - B -.57522 -.53655 -.23322 -.13765 -.13765 

D - C -.28318 -.29328 -.19360 -.11676 -.11676 

4. From among all pairs of alternatives, choose the least negative 
value of £. -0.02341 (B over P). This value is the most 
conservative angular coefficient within the possible range from 
-0.02341 to zero. 

5. Calculate the minimum utility index ROR for each pair of 
alternatives based on the angular coefficient selected using a 
trial and error routine. In each trial and error routine, the 
payoff values for the various states of nature are calculated 

according to the trial rate of return. 

For alternative A compared to present conditions, the four payoff 
values (AEX) for the various states of nature using a trial rate 
of return of 22.18% are as follows: 
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! ®F1 ®F2 ~~ AEXj^ — —5*62 
^2* ®F1 ~ 2%j ®F2 ~ 1 AEX2 113»66 
Ng: epj^ = 2%, ep2 =-1%» AEX3 = -16.66 
N^: epi = 1%, ep2 = 3%, AEX^ = 223.20 

Since all the four payoff values are different from one another, 
the extreme values of the index of utility can be found at the 
corner boundary points. Using the angular coefficient of 
-0.02341, the values of the mean, variance, and index of utility 
at each of the corner boundary points are listed as follows, 

Corner Probability for 
boundary state of nature Index of 

point 1 2 3 4 Mean Variance utility 

1 .80 .12 .06 .02 12. 61 2429. 45 0. 00* 

2 .50 .42 .06 .02 48. 39 4112. 63 27. 04 

3 .40 .32 .26 .02 34. 26 4041. 46 13. 27 

4 .35 .27 .21 .17 63. 17 8036. 23 21. 44 

Since the minimum index of utility(*) is zero at the trial rate 
of return of 22.18%, this trial rate of return is the minimum 
utility index ROR for alternative A compared to present 
conditions at the angular coefficient of -0.02341. 

In the same manner, the minimum utility index ROR for all pairs 
of alternatives can be calculated and summarized as follows. 

Minimum utility index ROR over 
P A B C 

Alternative A 22. ,18% 
B 21. ,15% 18. ,83% 
C 19. ,73% 16. ,58% 2.34% 
D 19. .06% 16. ,15% 13.85% 13.36% 

The final decision line based on the angular coefficient 
selected, i.e., -0.02341, is as follows, 

D  B A P  
+— ——— — ———4 ——h——————H — 
0 13.85% 18.83% 22.18% 

Since the final decision line does not include the pair of 
alternatives B over P, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 
alternatives, choose the next least negative value of min» 
-0.02353 (D over P). ' 
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5a. Calculate the minimum utility index ROR based on the angular 
coefficient selected, i.e., -0.02353. 

Minimum utility index ROR over 
P A B C 

Alternative A 22. ,18% 
B 21, ,14% 18. ,82% 
C 19. ,72% 16. ,58% 2.34% 
D 19. ,06% 16. ,15% 13.85% 13.35% 

6a. The final decision line based on the angular coefficient 
selected, i.e., -0.02353, is as follows, 

D  B A P  H 4 H + 
0 13.85% 18.82% 22.18% 

Since the final decision line does not include the pair of 
alternatives D over P, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 
alternatives, choose the next least negative value of a^. min' 
-0.03244 (C over P). 

5b. Calculate the minimum utility index ROR based on the angular 
coefficient selected, i.e., -0.03244. 

Minimum utility index ROR over 
P A B C 

Alternative A 22. ,12% 
B 20. ,97% 17. ,99% 
C 19. ,22% 16. ,41% 2.00% 

D 18. ,93% 16. .04% 13.78% 12.38% 

6b. The final decision line based on the angular coefficient 
selected, i.e., -0.03669, is as follows, 

D  B A P  

0 13.78% 17.99% 22.12% 

Since the final decision line does not include the pair of 
alternatives C over P, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 
alternatives, choose the next least negative value of min» 
-0.04097 (D over A). ' 
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5c. Calculate the minimum utility index ROR based on the angular 
coefficient selected, i.e., -0,04097. 

Minimum utility index ROR over 
P A B C 

Alternative A 22. ,05% 

B 20, .80% 17, ,24% 
C 18, ,76% 16, ,15% 1.76% 

D 18, ,80% 15, ,94% 13.72% 11.57% 

6c. The final decision line based on the angular coefficient 
selected, i.e., -0.04097, is as follows, 

D  B A P  
4—— — ——————— — I ———+— 1 — 

0 13.72% 17.24% 22.05% 

Since the final decision line does not include the pair of 

alternatives D over A, which provided the bases for the selection 
of the final angular coefficient, the final angular coefficient 
must be modified. From among the remaining pairs of 
alternatives, choose the next least negative value of 
-0.04517 (A over P), ' 

5d. Calculate the minimum utility index ROR based on the angular 
coefficient selected, i.e., -0.04517. 

Minimum utility index ROR over 
P A B C 

Alternative A 21, ,96% 
B 20, ,72% 16. ,89% 
C 18, ,53% 15. ,98% 1.66% 

D 18. .73% 15. .89% 13.69% 11.20% 

6d. The final decision line based on the angular coefficient 
selected, i.e., -0.04517, is as follows. 

B A P 
-+ H + 

0 13.69% 16.89% 21.96% 

Since the final decision line does include the pair of 
alternatives A over P, the final decision line is completed. 
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VIII. CONCLUSION 

The research objectives stated in the introduction require a complete 

and final decision line when evaluating a set of mutually exclusive 

alternatives under the context of incomplete knowledge for both weak and 

strict ranking. 

Chapter III disclosed the procedures of searching for the extreme 

variances of payoffs for alternatives under strict ranking. Since the 

extreme variances are a measure of dispersion of the expected payoffs, it 

may be interpreted as a measure of risk attached to each alternative under 

conditions of strict ranking in the context of incomplete knowledge. 

Chapter IV explored how the variances and the expected values of 

payoffs can be combined into an index of utility with a coefficient of 

risk aversion. In order to reduce the chances of unwanted results, a 

negative coefficient of risk aversion was used to apply heavier penalties 

for greater variances. With the coefficient of risk aversion assumed to 

be known, an algorithm was developed to search for the extreme indexes of 

utility under conditions of strict ranking in the context of incomplete 

knowledge. 

In Chapter V, the coefficient of risk aversion was expressed in terms 

of the minimum attractive rates of return and an angular coefficient. A 

method to determine the appropriate value of the angular coefficient for 

one set of mutually exclusive alternative was developed under the context 

of uncertainty. This method was then modified and was successfully 

applied to both the context of uncertainty and the context of risk. 

Chapters VI and VII extended the modified technique of finding the 



www.manaraa.com

174 

appropriate angular coefficient to conditions of weak ranking and strict 

ranking, respectively. After the angular coefficient was determined, it 

became possible to find the extreme rates of return on index of utility by 

applying the algorithm established in Chapter IV to search for the extreme 

indexes of utility. A complete and final decision line was then 

constructed based on the minimum rates of return on index of utility. 

Further research is recommended at this point. Sensitivity analysis 

of the basic results should be conducted. The sensitivity, and thus the 

Importance, of each variable should be determined. Also, a sensitivity 

analysis of the final decision line should be conducted under conditions 

of both weak and strict ranking to ascertain the value of additional 

information of the probabilities of possible states of nature. 

The utility function adopted in this research is a linear combination 

of the expected value and the variance. In view of the recent 

developments in non-linear utility theory, it would be of interest to 

apply a non-linear utility function in the decision procedure. Since 

several curvilinear functions could describe the relationship between the 

minimum attractive rates of return and the coefficient of risk aversion, 

it is important to investigate the theoretical function that best 

describes the decision process. 

It is also noted that equal weights have been conventionally given to 

both positive and negative deviations when using the variance as a measure 

of dispersion. The feasibility of using asymmetric measures of 

dispersion, where more weight is given to the negative deviation than to 

the positive deviation, needs to be studied. 
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The final decision line for one set of mutually exclusive 

alternatives can be determined as a result of this research. The 

possibility of developing a decision procedure for a combination of 

independent and mutually exclusive alternatives under the context of risk, 

uncertainty, and incomplete knowledge should be investigated. 
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